Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ute Häussler is active.

Publication


Featured researches published by Ute Häussler.


Cell Stem Cell | 2010

Quiescent and Active Hippocampal Neural Stem Cells with Distinct Morphologies Respond Selectively to Physiological and Pathological Stimuli and Aging

Sebastian Lugert; Onur Basak; Philip Knuckles; Ute Häussler; Klaus Fabel; Magdalena Götz; Carola A. Haas; Gerd Kempermann; Verdon Taylor; Claudio Giachino

New neurons are generated in the adult hippocampus throughout life by neural stem/progenitor cells (NSCs), and neurogenesis is a plastic process responsive to external stimuli. We show that canonical Notch signaling through RBP-J is required for hippocampal neurogenesis. Notch signaling distinguishes morphologically distinct Sox2(+) NSCs, and within these pools subpopulations can shuttle between mitotically active or quiescent. Radial and horizontal NSCs respond selectively to neurogenic stimuli. Physical exercise activates the quiescent radial population whereas epileptic seizures induce expansion of the horizontal NSC pool. Surprisingly, reduced neurogenesis correlates with a loss of active horizontal NSCs in aged mice rather than a total loss of stem cells, and the transition to a quiescent state is reversible to rejuvenate neurogenesis in the brain. The discovery of multiple NSC populations with Notch dependence but selective responses to stimuli and reversible quiescence has important implications for the mechanisms of adaptive learning and also for regenerative therapy.


Neurobiology of Disease | 2011

Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy

Christophe Heinrich; Sari Lähteinen; Fumio Suzuki; Laharie Anne-Marie; Susanne Huber; Ute Häussler; Carola A. Haas; Yves Larmet; Eero Castrén; Antoine Depaulis

Mesio-temporal lobe epilepsy (MTLE), the most common drug-resistant epilepsy syndrome, is characterized by the recurrence of spontaneous focal seizures after a latent period that follows, in most patients, an initial insult during early childhood. Many of the mechanisms that have been associated with the pathophysiology of MTLE are known to be regulated by brain-derived neurotrophic factor (BDNF) in the healthy brain and an excess of this neurotrophin could therefore play a critical role in MTLE development. However, such a function remains controversial as other studies revealed that BDNF could, on the contrary, exert protective effects regarding epilepsy development. In the present study, we further addressed the role of increased BDNF/TrkB signaling on the progressive development of hippocampal seizures in the mouse model of MTLE obtained by intrahippocampal injection of kainate. We show that hippocampal seizures progressively developed in the injected hippocampus during the first two weeks following kainate treatment, within the same time-frame as a long-lasting and significant increase of BDNF expression in dentate granule cells. To determine whether such a BDNF increase could influence hippocampal epileptogenesis via its TrkB receptors, we examined the consequences of (i) increased or (ii) decreased TrkB signaling on epileptogenesis, in transgenic mice overexpressing the (i) TrkB full-length or (ii) truncated TrkB-T1 receptors of BDNF. Epileptogenesis was significantly facilitated in mice with increased TrkB signaling but delayed in mutants with reduced TrkB signaling. In contrast, TrkB signaling did not influence granule cell dispersion, an important feature of this mouse model which is also observed in most MTLE patients. These results suggest that an increase in TrkB signaling, mediated by a long-lasting BDNF overexpression in the hippocampus, promotes epileptogenesis in MTLE.


Brain | 2015

Astrocyte uncoupling as a cause of human temporal lobe epilepsy

Peter Bedner; Alexander Dupper; Kerstin Hüttmann; Julia Müller; Michel K. Herde; Pavel Dublin; Tushar Deshpande; Johannes Schramm; Ute Häussler; Carola A. Haas; Christian Henneberger; Martin Theis; Christian Steinhäuser

Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K(+) buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention.


Journal of Clinical Investigation | 2014

Changes in neural network homeostasis trigger neuropsychiatric symptoms

Aline Winkelmann; Nicola Maggio; Joanna Eller; Gürsel Çalışkan; Marcus Semtner; Ute Häussler; René Jüttner; Tamar Dugladze; Birthe Smolinsky; Sarah Kowalczyk; Ewa Chronowska; Günter Schwarz; Fritz G. Rathjen; Gideon Rechavi; Carola A. Haas; Akos Kulik; Tengis Gloveli; Uwe Heinemann; Jochen C. Meier

The mechanisms that regulate the strength of synaptic transmission and intrinsic neuronal excitability are well characterized; however, the mechanisms that promote disease-causing neural network dysfunction are poorly defined. We generated mice with targeted neuron type-specific expression of a gain-of-function variant of the neurotransmitter receptor for glycine (GlyR) that is found in hippocampectomies from patients with temporal lobe epilepsy. In this mouse model, targeted expression of gain-of-function GlyR in terminals of glutamatergic cells or in parvalbumin-positive interneurons persistently altered neural network excitability. The increased network excitability associated with gain-of-function GlyR expression in glutamatergic neurons resulted in recurrent epileptiform discharge, which provoked cognitive dysfunction and memory deficits without affecting bidirectional synaptic plasticity. In contrast, decreased network excitability due to gain-of-function GlyR expression in parvalbumin-positive interneurons resulted in an anxiety phenotype, but did not affect cognitive performance or discriminative associative memory. Our animal model unveils neuron type-specific effects on cognition, formation of discriminative associative memory, and emotional behavior in vivo. Furthermore, our data identify a presynaptic disease-causing molecular mechanism that impairs homeostatic regulation of neural network excitability and triggers neuropsychiatric symptoms.


Experimental Neurology | 2009

Exogenous reelin prevents granule cell dispersion in experimental epilepsy.

Martin Müller; Matthias Osswald; Stefanie Tinnes; Ute Häussler; Anne Jacobi; Eckart Förster; Michael Frotscher; Carola A. Haas

Temporal lobe epilepsy (TLE) is often accompanied by granule cell dispersion (GCD), a migration defect of granule cells in the dentate gyrus. We have previously shown that a decrease in the expression of reelin, an extracellular matrix protein important for neuronal positioning, is associated with the development of GCD in TLE patients. Here, we used unilateral intrahippocampal injection of kainate (KA) in adult mice which is also associated with GCD formation and a decrease of reelin expression. In this mouse epilepsy model we aimed to prevent GCD development by the application of exogenous reelin. As a prerequisite we analyzed whether the reelin signaling transduction cascade was preserved in the KA-injected hippocampus. Using in situ hybridization and Western blot analysis we found that the expression of the reelin signaling components, apolipoprotein E receptor 2, the very-low-density lipoprotein receptor and the intracellular adaptor protein disabled 1, was maintained in dentate granule cells after KA injection. Next, recombinant reelin was infused into the KA-injected hippocampus by osmotic minipumps over a period of 2 weeks. Quantitative analysis of granule cell layer width revealed a significant reduction of GCD in reelin-treated, but not in saline-infused animals when compared to KA injection alone. Our findings highlight the crucial role of reelin for the maintenance of granule cell lamination in the dentate gyrus of adult mice and show that a reelin deficiency is causally involved in GCD development.


Hippocampus | 2011

Dentate Gyrus and Hilus Transection Blocks Seizure Propagation and Granule Cell Dispersion in a Mouse Model for Mesial Temporal Lobe Epilepsy

Johan Pallud; Ute Häussler; Mélanie Langlois; Sophie Hamelin; Bertrand Devaux; Colin Deransart; Antoine Depaulis

Epilepsy‐associated changes of the anatomical organization of the dentate gyrus and hilus may play a critical role in the initiation and propagation of seizures in mesial temporal lobe epilepsy (MTLE). This study evaluated the role of longitudinal projections in the propagation of hippocampal paroxysmal discharges (HPD) in dorsal hippocampus by performing a selective transection in a mouse model for MTLE obtained by a single unilateral intrahippocampal injection of kainic acid (KA). Full transections of the dentate gyrus and hilus were performed in the transverse axis at 22 days after KA injection when spontaneous HPD were fully developed. They: (i) significantly reduced the occurrence of HPD; (ii) increased their duration at the KA injection site; (iii) abolished their spread along the longitudinal axis of the hippocampal formation and; (iv) limited granule cell dispersion (GCD) of the dentate gyrus posterior to the transection. These data suggest that: (i) longitudinal projections through the dentate gyrus and hilus are involved in HPD spread; (ii) distant hippocampal circuits participate in the generation and cessation of HPD and; (iii) GCD requires continuous HPD to develop, even when seizures are established. Our data reveal a critical role for longitudinal projections in the generation and spread of hippocampal seizures.


NeuroImage | 2007

Short-term changes in bilateral hippocampal coherence precede epileptiform events

Ralph Meier; Ute Häussler; Ad Aertsen; Colin Deransart; Antoine Depaulis; Ulrich Egert

The mesial temporal lobe epilepsy syndrome (MTLE) is the most common form of focal epilepsies. MTLE patients usually respond very little to pharmacological therapy and surgical resection of temporal brain areas is mandatory. Finding less invasive therapies than resection of the sclerotic hippocampus requires knowledge of the network structures and dynamics involved in seizure generation. Investigation of the time interval immediately preceding seizure onset would help in understanding the initiation mechanisms of the seizure proper and, thereby, possibly improve therapeutical options. Here, we employed the in vivo intrahippocampal kainate model in mice, which is characterized by unilateral histological changes, resembling hippocampal sclerosis observed in human MTLE, and recurrent focal seizures. In these epileptic mice, population spikes occurred during epileptiform events (EEs) in the ipsilateral, histologically changed hippocampus, but also concomitantly in the contralateral, intact hippocampus. We studied synchronization processes between the ipsilateral, sclerotic hippocampus and the contralateral hippocampus immediately preceding the onset of EEs. We show that coherence between the two hippocampi decreased consistently and reliably for all EEs at 8 to 12 s before their onset at high frequencies (>100 Hz), without changes in power in these bands. This early decoupling of the two hippocampi indicates the time range for cellular and network mechanisms leading to increased excitability and/or synchronicity in the tissue and thus ultimately to epileptic seizures.


Cerebral Cortex | 2012

Septotemporal Position in the Hippocampal Formation Determines Epileptic and Neurogenic Activity in Temporal Lobe Epilepsy

Ute Häussler; Lena Bielefeld; Ulrich P. Froriep; Jakob Wolfart; Carola A. Haas

It is a matter of ongoing debate whether newly generated granule cells contribute to epileptic activity in the hippocampus. To address this question, we investigated neurogenesis and epileptiform activity (EA) along the hippocampal septotemporal axis in the intrahippocampal kainate (KA) mouse model for temporal lobe epilepsy. Multisite intrahippocampal in vivo recordings and immunolabeling for c-Fos showed that the KA-induced status epilepticus (SE) extended along the septotemporal axis of both hippocampi with stronger intensity at ipsilateral temporal and contralateral sites. Accordingly, we found a position-dependent increase in proliferation (incorporation of bromodeoxyuridine) and neurogenesis (immunolabeling for doublecortin): Both were selectively increased in the ipsilateral temporal and entire contralateral subgranular zone, sparing the septal region close to the injection site. The newborn neurons were hyperexcitable and functionally integrated into the hippocampal network as revealed by patch-clamp recordings. Analysis of chronic EA also showed a differential intensity pattern along the hippocampal axis: EA was low in the septal portion with prominent sclerosis and granule cell dispersion but most pronounced in the transition zone where neurogenesis reappeared. In conclusion, SE stimulates neurogenesis in a position-dependent manner and coincidence of neurogenesis and stronger EA distal to the injection site suggests a proepileptogenic effect of increased neurogenesis.


Frontiers in Cellular Neuroscience | 2013

Differential vulnerability of interneurons in the epileptic hippocampus

Markus Marx; Carola A. Haas; Ute Häussler

The loss of hippocampal interneurons has been considered as one reason for the onset of temporal lobe epilepsy (TLE) by shifting the excitation-inhibition balance. Yet, there are many different interneuron types which show differential vulnerability in the context of an epileptogenic insult. We used the intrahippocampal kainate (KA) mouse model for TLE in which a focal, unilateral KA injection induces status epilepticus (SE) followed by development of granule cell dispersion (GCD) and hippocampal sclerosis surrounding the injection site but not in the intermediate and temporal hippocampus. In this study, we characterized the loss of interneurons with respect to septotemporal position and to differential vulnerability of interneuron populations. To this end, we performed intrahippocampal recordings of the initial SE, in situ hybridization for glutamic acid decarboxylase 67 (GAD67) mRNA and immunohistochemistry for parvalbumin (PV) and neuropeptide Y (NPY) in the early phase of epileptogenesis at 2 days and at 21 days after KA injection, when recurrent epileptic activity and GCD have fully developed. We show that SE extended along the entire septotemporal axis of both hippocampi, but was stronger at distant sites than at the injection site. There was an almost complete loss of interneurons surrounding the injection site and expanding to the intermediate hippocampus already at 2 days but increasing until 21 days after KA. Furthermore, we observed differential vulnerability of PV- and NPY-expressing cells: while the latter were lost at the injection site but preserved at intermediate sites, PV-expressing cells were gone even at sites more temporal than GCD. In addition, we found upregulation of GAD67 mRNA expression in dispersed granule cells and of NPY staining in ipsilateral granule cells and ipsi- and contralateral mossy fibers. Our data thus indicate differential survival capacity of interneurons in the epileptic hippocampus and compensatory plasticity mechanisms depending on the hippocampal position.


Proceedings of the National Academy of Sciences of the United States of America | 2013

GABA B autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice

Tamar Dugladze; Nino Maziashvili; Christoph Börgers; Shalva Gurgenidze; Ute Häussler; Aline Winkelmann; Carola A. Haas; Jochen C. Meier; Imre Vida; Nancy Kopell; Tengis Gloveli

Significance Metabotropic GABAB receptors control synaptic transmission and excitability in neuronal circuits of the brain. Although effects of these receptors are predominantly inhibitory at both cellular and network levels, application of the agonist baclofen can promote excitability and induce seizures in patients and animal models of epilepsy. Here we demonstrate that proepileptic effects of baclofen are concentration dependent and result from disinhibition. Although at high doses, baclofen reduces network excitability due to its combined pre- and postsynaptic inhibitory effects in pyramidal cells, at low doses, it leads to an enhanced presynaptic suppression of the synaptic output of a specific set of inhibitory neurons. This disinhibitory effect promotes high-frequency oscillations and the emergence of pathological discharges in the epileptic hippocampal network. GABAB receptors (GABABRs) mediate slow inhibitory effects on neuronal excitability and synaptic transmission in the brain. However, the GABABR agonist baclofen can also promote excitability and seizure generation in human patients and animals models. Here we show that baclofen has concentration-dependent effects on the hippocampal network in a mouse model of mesial temporal lobe epilepsy. Application of baclofen at a high dose (10 mg/kg i.p.) reduced the power of γ oscillations and the frequency of pathological discharges in the Cornu Ammonis area 3 (CA3) area of freely moving epileptic mice. Unexpectedly, at a lower dose (1 mg/kg), baclofen markedly increased γ activity accompanied by a higher incidence of pathological discharges. Intracellular recordings from CA3 pyramidal cells in vitro further revealed that, although at a high concentration (10 µM), baclofen invariably resulted in hyperpolarization, at low concentrations (0.5 µM), the drug had divergent effects, producing depolarization and an increase in firing frequency in epileptic but not control mice. These excitatory effects were mediated by the selective muting of inhibitory cholecystokinin-positive basket cells (CCK+ BCs), through enhanced inhibition of GABA release via presynaptic GABABRs. We conclude that cell type–specific up-regulation of GABABR-mediated autoinhibition in CCK+ BCs promotes aberrant high frequency oscillations and hyperexcitability in hippocampal networks of chronic epileptic mice.

Collaboration


Dive into the Ute Häussler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aline Winkelmann

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Jochen C. Meier

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph Meier

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ad Aertsen

University of Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge