Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ute Hempel is active.

Publication


Featured researches published by Ute Hempel.


Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2003

Functionally graded materials for biomedical applications

Wolfgang Pompe; H. Worch; Matthias Epple; W Friess; Michael Gelinsky; Peter Greil; Ute Hempel; Dieter Scharnweber; K Schulte

Functional gradation is one characteristic feature of living tissue. Bio-inspired materials open new approaches for manufacturing implants for bone replacement. Different routes for new implant materials are presented using the principle of functional gradation. An artificial biomaterial for knee joint replacement has been developed by building a graded structure consisting of ultra-high molecular weight polyethylene (UHMWPE) fibre reinforced high-density polyethylene combined with a surface of UHMWPE. The ingrowth behaviour of titanium implants into hard tissue can be improved by depositing a graded biopolymer coating of fibronectin, collagen types I and III with a gradation, derived from the mechanisms occurring during healing in vivo. Functionally graded porous hydroxyapatite (HAP) ceramics can be produced using alternative routes, e.g. sintering of laminated structures of HAP tapes filled with polymer spheres or combining biodegradable polyesters such as polylactide, polylactide-co-glycolide and polyglycolide, with carbonated nanocrystalline hydroxyapatite. HAP–collagen I scaffolds are an appropriate material for in vitro growth of bone. The scaffold has to be functionally graded in order to create an optimised mechanical behaviour as well as the intended improvement of the cell ingrowth.


Journal of Biomedical Materials Research | 2000

Collagen type I‐coating of Ti6Al4V promotes adhesion of osteoblasts

U. Geissler; Ute Hempel; C. Wolf; Dieter Scharnweber; Hartmut Worch; Klaus-Wolfgang Wenzel

The initial contact of osteoblasts with implant surfaces is an important event for osseointegration of implants. Osseointegration of Ti6Al4V may be improved by precoating of its surface with collagen type I. In this study, the adhesion of rat calvarial osteoblasts to uncoated and collagen type I-coated titanium alloy was investigated over a period of 24 h. Collagen type I-coating accelerates initial adhesion of osteoblasts in the presence of fetal calf serum. One hour after plating, no differences in the percentage of adherent cells between the surfaces investigated were found. Adhesion of osteoblasts to uncoated surfaces was reduced by the GRGDSP peptide by about 70%, whereas adhesion to collagen type I-coated surfaces remained unaffected by treatment of the cells with the peptide. Cell adhesion to coated materials was reduced by about 80% by anti-integrin beta1 antibody. The integrin beta1 antibody did not influence the adhesion to uncoated titanium alloy. The results suggest that osteoblasts adhere to collagen type I-coated materials via integrin beta1 but not by interacting with RGD peptides, whereas adhesion to uncoated titanium alloy is mediated by RGD sequences but not via integrin beta1. Fibronectin does not seem to be involved in the adhesion of osteoblasts to either coated or uncoated titanium alloy.


FEBS Letters | 1997

Transforming growth factor-β1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells

Thomas Reimann; Ute Hempel; Stefan Krautwald; Andreas Axmann; Roland Scheibe; Dagmar Seidel; Klaus-Wolfgang Wenzel

© 1997 Federation of European Biochemical Societies.


Histochemistry and Cell Biology | 1997

Loss of caveolin expression in type I pneumocytes as an indicator of subcellular alterations during lung fibrogenesis

Michael Kasper; Thomas Reimann; Ute Hempel; Klaus-Wolfgang Wenzel; A. Bierhaus; Dieter Schuh; Volker Dimmer; Gunter Haroske; Martin Müller

Abstract Caveolin is a major structural protein of caveolae, also known as plasmalemmal vesicles, which are particularly abundant in type I pneumocytes and capillary endothelial cells of lung parenchyma. Here we demonstrate that caveolin expression in the alveolar epithelium of rats and mini pigs is strikingly downregulated after irradiation-induced lung injury. Indirect immunoperoxidase staining with polyclonal anti-caveolin antibodies, confirmed by double fluorescence studies with type I cell-specific monoclonal anti-cytokeratin antibodies or lectins, revealed a dramatic loss of caveolin immunoreactivity in type I pneumocytes. In contrast, caveolin expression increased in endothelial cells. Immunoblotting of lung homogenates from normal and irradiated rats using specific anti-caveolin antibodies confirmed the presence of caveolin in normal tissue and its marked decrease of expression in fibrotic tissue. The loss of caveolin as an important structural protein of caveolae in alveolar epithelial cells may be an early indicator of serious type I cell injury during fibrogenesis. The increase of caveolin immunoreactivity in endothelia of blood vessels may indicate that different types of caveolae and/or different regulatory mechanisms of caveolin expression exist.


American Journal of Pathology | 2009

Inhibition of Receptor Activator of NF-κB Ligand by Denosumab Attenuates Vascular Calcium Deposition in Mice

Susann Helas; Claudia Goettsch; Michael Schoppet; Ute Zeitz; Ute Hempel; Henning Morawietz; Paul J. Kostenuik; Reinhold G. Erben; Lorenz C. Hofbauer

Osteoporosis and vascular calcification frequently coincide. A potential mediator of bone metabolism and vascular homeostasis is the triad cytokine system, which consists of receptor activator of nuclear factor-kappaB (RANK) ligand (RANKL), its receptor RANK, and the decoy receptor osteoprotegerin. Unopposed RANKL activity in osteoprotegerin-deficient mice resulted in osteoporosis and vascular calcification. We therefore analyzed the effects of RANKL inhibition by denosumab, a human monoclonal antibody against RANKL, on vascular calcium deposition following glucocorticoid exposure. Prednisolone pellets were implanted into human RANKL knock-in (huRANKL-KI) mice, which unlike wild-type mice are responsive to denosumab. No histomorphological abnormalities or differences in aortic wall thickness were detected between wild-type and huRANKL-KI mice, regardless of treatment with prednisolone, denosumab, or both. However, concurrent treatment with denosumab reduced aortic calcium deposition of prednisolone-treated huRANKL-KI mice by up to 50%, based on calcium measurement. Of note, aortic calcium deposition in huRANKL-KI mice was correlated negatively with bone mineral density at the lumbar spine (P = 0.04) and positively with urinary excretion of deoxypyridinoline, a marker of bone resorption (P = 0.01). In summary, RANKL inhibition by denosumab reduced vascular calcium deposition in glucocorticoid-induced osteoporosis in mice, which is further evidence for the link between the bone and vascular systems. Therefore, the prevention of bone loss by denosumab might also be associated with reduced vascular calcification in certain conditions.


Journal of Molecular Medicine | 2012

Regenerative potential of glycosaminoglycans for skin and bone.

Juliane Salbach; Tilman D. Rachner; Martina Rauner; Ute Hempel; Ulf Anderegg; Sandra Franz; Jan-Christoph Simon; Lorenz C. Hofbauer

To meet the growing need for tissue replacement materials for our aging population, the development of new adaptive biomaterials is essential. The tissues with the highest demand for implant materials are skin and bone. These tissues share various similarities, including signaling pathways and extracellular matrix composition. Glycosaminoglycans such as hyaluronan and chondroitin sulfate are the major organic extracellular matrix components. They modulate the attraction of skin and bone precursor cells and their subsequent differentiation and gene expression and regulate the action of proteins essential to bone and skin regeneration. The precise action of glycosaminoglycans varies according to their structural composition mainly in respect to the degree of sulfation and polymer length. Changes in the glycosaminoglycan composition are frequently seen in physiological and pathological remodeling processes, such as bone formation or scaring. Here, we review the current state of knowledge of how the most common glycosaminoglycan, chondroitin sulfate and hyaluronan, interact with bone and skin cells, and summarize their potential in tissue engineering for skeletal and skin diseases.


American Journal of Pathology | 2011

miR-125b Regulates Calcification of Vascular Smooth Muscle Cells

Claudia Goettsch; Martina Rauner; Nicole Pacyna; Ute Hempel; Stefan R. Bornstein; Lorenz C. Hofbauer

Vascular calcification is a prominent feature of atherosclerosis and is closely linked to osteoporosis. Cellular differentiation is regulated by various microRNAs (miRs), including miR-125b, which is known to be involved in osteoblast differentiation. However, no specific miR has been defined that modulates vascular calcification. Herein, we assessed the impact of miR-125b in osteogenic transformation of vascular smooth muscle cells. Osteogenic transdifferentiation of human coronary artery smooth muscle cells was induced by osteogenic medium and enhanced the formation of mineralized matrix, resulting in a significantly higher mineral deposition after 21 days. Increased expression of miR-125b was time-dependent in human coronary artery smooth muscle cells and diminished during osteogenic transdifferentiation. At day 21, miR-125b was significantly reduced (-42%) compared with that in the untreated control. The expression of miR-processing enzymes, RNase III endonucleases DICER1 and DROSHA, was also decreased. Furthermore, inhibition of endogenous miR-125b promoted osteogenic transdifferentiation, as measured by increased alkaline phosphatase activity and matrix mineralization. Expression analysis revealed the osteoblast transcription factor SP7 (osterix) as a target of miR-125b. In vivo, miR-125b was decreased in calcified aortas of apolipoprotein E knockout mice. In conclusion, our results suggest that miR-125b is involved in vascular calcification in vitro and in vivo, at least partially by targeting SP7. Evaluating the role of miRs in arterial calcification in vivo may have important therapeutic implications.


American Journal of Physiology-endocrinology and Metabolism | 2011

Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function

Christine Hamann; Claudia Goettsch; Jan Mettelsiefen; Veit Henkenjohann; Martina Rauner; Ute Hempel; Ricardo Bernhardt; Nadja Fratzl-Zelman; Paul Roschger; Stefan Rammelt; Klaus-Peter Günther; Lorenz C. Hofbauer

Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.


Clinical Oral Implants Research | 2010

Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies

Ute Hempel; Thomas Hefti; Marie Kalbacova; Cornelia Wolf-Brandstetter; Peter Dieter; Falko Schlottig

OBJECTIVES Zirconia is a suitable biomaterial for use in medicine (stomatology, orthopaedics) due to its good biocompatibility and outstanding mechanical properties. This study compares the effect of (i) zirconia to the widely used titanium and (ii) zirconia with two different surface topographies (sandblasted and sandblasted/etched) on the adhesion, proliferation and differentiation of SAOS-2 osteoblasts. METHODS SAOS-2 cells were cultured on either sandblasted or sandblasted/etched zirconia and compared with sandblasted/etched titanium. 2 and 24 h after plating, cell morphology was investigated by scanning electron microscope (SEM) and fluorescence imaging. At 24 and 48 h, cell number-relevant parameters were determined. Alkaline phosphatase (ALP) activity and mineral accumulation were measured at days 8, 11, 15 and day 22 of culture, respectively. RESULTS SEM and fluorescence images revealed a faster spreading as well as higher number of adherent cells after 24 h incubation on zirconia compared with titanium. Also, the cellular metabolic activity after 24 h and the proliferation rate after 48 h is higher with zirconia compared with titanium. Zirconia had a more pronounced effect compared with titanium on the differentiation of SAOS-2 cells: ALP activity, an early differentiation marker increased earlier and mineralization, a late differentiation marker was increased. Only minor differences were found between zirconia with two different surface topographies; etched zirconia promoted slightly greater the differentiation of SAOS-2 cells. CONCLUSIONS These data indicate that zirconia mediates a pronounced stronger effect on the adhesion, proliferation and differentiation compared with titanium; and that topographical differences of zirconia have minor effects on osteoblast biology.


Acta Biomaterialia | 2012

Artificial extracellular matrices composed of collagen I and sulfated hyaluronan with adsorbed transforming growth factor β1 promote collagen synthesis of human mesenchymal stromal cells.

Ute Hempel; Vera Hintze; Stephanie Möller; Matthias Schnabelrauch; Dieter Scharnweber; Peter Dieter

Sulfated glycosaminoglycans (GAG) are multifunctional components of the extracellular matrix and are involved in the regulation of adhesion, proliferation and differentiation of cells. The effects of GAG are mediated in general by their interactions with cations and water, and in particular by their binding to growth factors. The aim of this study was to generate artificial extracellular matrices (aECM) containing collagen I and hyaluronan sulfate (HyaS), which are capable of adsorbing and releasing transforming growth factor β1 (TGF-β1), and to promote collagen synthesis of cultured human mesenchymal stromal cells (hMSC). For the preparation of aECM, monosulfated Hya (HyaS1) or trisulfated Hya (HyaS3) were used; the natural chondroitin-4-sulfate was used as a control. As applied for the in vitro experiments, the resulting matrices were composed of 93-98% collagen I and 2-7% GAG derivative. Adsorption of TGF-β1 to the aECM and release from the aECM was dependent on the degree of sulfation of hyaluronan. Collagen synthesis of hMSC was promoted only by aECM with adsorbed TGF-β1; the bare aECM had a slightly inhibitory effect on collagen synthesis. The promoting effect did not correlate either to the amount of adsorbed TGF-β1 nor to the release of TGF-β1, indicating that the correct presentation of TGF-β1 to the cells might be critical. The results indicate that sulfated hyaluronan-containing aECM have the potential to control both the adsorption and release of TGF-β1, and thereby promote collagen synthesis of hMSC. Thus, these aECM might be a useful tool for different tissue-engineering applications to enhance bone formation when used for biomaterial coating.

Collaboration


Dive into the Ute Hempel's collaboration.

Top Co-Authors

Avatar

Dieter Scharnweber

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Dieter

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lorenz C. Hofbauer

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hartmut Worch

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Vera Hintze

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Klaus-Wolfgang Wenzel

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Susanne Bierbaum

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Claudia Goettsch

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne-Helen Lutter

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Martina Rauner

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge