Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ute Kuhlicke is active.

Publication


Featured researches published by Ute Kuhlicke.


Bioelectrochemistry | 2013

Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential

Alessandro A. Carmona-Martínez; Falk Harnisch; Ute Kuhlicke; Thomas R. Neu; Uwe Schröder

Shewanellaceae are among the most widely studied electroactive microorganisms. In this report, we studied the influence of the applied electrode potential on the anodic current production of Shewanella putrefaciens NCTC 10695 under anoxic conditions. Furthermore, we used cyclic voltammetry (CV) and confocal laser scanning microscopy (CLSM) to investigate the microbial electron transfer and biofilm formation. It is shown that the chronoamperometric current density is increasing with increasing electrode potential from 3 μA cm(-2) at -0.1 V up to -12 μA cm(-2) at +0.4 V (vs. Ag/AgCl), which is accompanied by an increasing amount of biomass deposited on the electrode. By means of cyclic voltammetry we demonstrate that direct electron transfer (DET) is dominating and the planktonic cells play only a minor role.


Applied and Environmental Microbiology | 2005

Three Stages of a Biofilm Community Developing at the Liquid-Liquid Interface between Polychlorinated Biphenyls and Water

Alexandre José Macedo; Ute Kuhlicke; Thomas R. Neu; Kenneth N. Timmis; Wolf-Rainer Abraham

ABSTRACT Soil contaminated with polychlorinated biphenyls (PCB) was used as an inoculum to grow a complex biofilm community on PCB oil (Aroclor 1242) on a substratum (Permanox). The biofilm was monitored for 31 days by confocal laser scanning microscopy, community fingerprinting using single-strand conformational polymorphism (SSCP), amplicons of the 16S rRNA genes, and chemical analyses of the PCB congeners. SSCP analysis of the young biofilm revealed a rather diverse microbial community with species of the genera Herbaspirillum and Bradyrhizobium as dominant members. The biofilm developing on the PCB droplets displayed pronounced stages of PCB degradation and biofilm development not described before from pure-culture experiments. The first step was the colonization of the substratum while the PCB oil was hardly populated. When a certain density of bacteria was reached on the Permanox, the PCB was colonized, but soon the degradation of the congeners was markedly reduced and many cells were damaged, as seen by LIVE/DEAD staining. Finally, the biofilm formed aggregates and invaded the PCB oil, showing lower numbers of damaged cells than before and a dramatic increase in PCB degradation. This sequence of biofilm formation is understood as a maturation process prior to PCB oil colonization. This is followed by a thin biofilm on the PCB droplet, an aggregation process forming pockets in the PCB, and finally an invasion of the biofilm into the PCB oil. Only the mature biofilm showed degradation of pentachlorinated PCB congeners, which may be reductively dechlorinated and the resulting trichlorobiphenyls then aerobically metabolized.


Microbial Biotechnology | 2015

Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms

R Y Zhang; Thomas R. Neu; S Bellenberg; Ute Kuhlicke; W Sand; M. A. Vera

Biofilm formation and the production of extracellular polymeric substances (EPS) by meso‐ and thermoacidophilic metal‐oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin‐binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms.


Applied Microbiology and Biotechnology | 2015

Erratum to: Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus

Ruiyong Zhang; Thomas R. Neu; Yutong Zhang; Sören Bellenberg; Ute Kuhlicke; Qian Li; Wolfgang Sand; Mario Vera

Biofilms are surface-associated colonies of microorganisms embedded in a matrix of extracellular polymeric substances (EPS). As EPS mediate the contact between cells and surfaces, an understanding of their composition and production is of particular interest. In this study, the EPS components of Sulfolobus metallicus DSM 6482(T) forming biofilms on elemental sulfur (S(0)) were investigated by confocal laser scanning microscopy (CLSM). In order to visualize cell and EPS distributions, biofilm cells were stained with various dyes specific for glycoconjugates, proteins, nucleic acids and lipids. Biofilm cells on S(0) were heterogeneously distributed and characterized as individual cells, microcolonies, and large clusters up to a hundred micrometers in diameter. The glycoconjugates in biofilms were detected by fluorescence lectin-binding analysis (FLBA). Screening of 72 commercially available lectins resulted in the selection of 21 lectins useful for staining biofilms of S. metallicus (T). Capsular EPS from planktonic cells were mainly composed of carbohydrates and proteins. In contrast, colloidal EPS from planktonic cells were dominated by carbohydrates. Proteins were found to be major components in EPS from biofilms on S(0). Using specific probes combined with CLSM, we showed that extracellular proteins and nucleic acids were present in the EPS matrix. Finally, we showed that S. metallicus (T) cells were embedded in a flexible EPS matrix. This study provides new insights into archaeal biofilms and EPS composition and properties with respect to their interactions with S(0).


Applied and Environmental Microbiology | 2008

In Situ Activity of Suspended and Immobilized Microbial Communities as Measured by Fluorescence Lifetime Imaging

Petr Walczysko; Ute Kuhlicke; Sabine Knappe; Christiana Cordes; Thomas R. Neu

ABSTRACT In this study, the feasibility of fluorescence lifetime imaging (FLIM) for measurement of RNA:DNA ratios in microorganisms was assessed. The fluorescence lifetime of a nucleic acid-specific probe (SYTO 13) was used to directly measure the RNA:DNA ratio inside living bacterial cells. In vitro, SYTO 13 showed shorter fluorescence lifetimes in DNA solutions than in RNA solutions. Growth experiments with bacterial monocultures were performed in liquid media. The results demonstrated the suitability of SYTO 13 for measuring the growth-phase-dependent RNA:DNA ratio in Escherichia coli cells. The fluorescence lifetime of SYTO 13 reflected the known changes of the RNA:DNA ratio in microbial cells during different growth phases. As a result, the growth rate of E. coli cells strongly correlated with the fluorescence lifetime. Finally, the fluorescence lifetimes of SYTO 13 in slow- and fast-growing biofilms were compared. For this purpose, biofilms developed from activated sludge were grown as autotrophic and heterotrophic communities. The FLIM data clearly showed a longer fluorescence lifetime for the fast-growing heterotrophic biofilms and a shorter fluorescence lifetime for the slow-growing autotrophic biofilms. Furthermore, starved biofilms showed shorter lifetimes than biofilms supplied with glucose, indicating a lower RNA:DNA ratio in starved biofilms. It is suggested that FLIM in combination with SYTO 13 represents a useful tool for the in situ differentiation of active and inactive bacteria. The technique does not require radioactive chemicals and may be applied to a broad range of sample types, including suspended and immobilized microorganisms.


Microorganisms | 2017

Fluorescence Lectin Bar-Coding of Glycoconjugates in the Extracellular Matrix of Biofilm and Bioaggregate Forming Microorganisms

Thomas R. Neu; Ute Kuhlicke

Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems. Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular.


FEMS Microbiology Ecology | 2016

In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies

John R. Lawrence; G. D. W. Swerhone; Ute Kuhlicke; Thomas R. Neu

CLSM and fluorescent probes were applied to assess the structure, composition, metabolic activity and gradients within naturally occurring β-proteobacteria microcolonies. Extracellular polymeric substances (EPS) as defined by lectin-binding analyses had three regions: (i) cell associated, (ii) intercellular and (iii) an outer layer covering the entire colony. We assessed structural, microenvironmental and metabolic implications of this complex EPS structure. Permeability studies indicated that the outer two layers were permeable to 20 nm beads, intercellular EPS to <40 nm beads and the outer layer was permeable to <100 nm beads. Phosphatase activity occurred at the cell surface and associated polymer. Glucose oxidase activity was only detected inside the cells and the cell-associated polymer. Rhodamine 123 suggested that activity was highest near the cell surface. The potential sensitive dye JC-1 concentrated within the outer EPS layer and the gradient was responsive to inhibition by KCN, dispersion using KCl and enhanced by addition of nutrients (nutrient broth). pH gradients occurred from the cell interior (pH 7) to the microcolony interior (pH 4+) with a gradient of increasing pH (pH 7+) to the colony exterior. The EPS provides a physical and chemical structuring mechanism forming microdomains that segregate extracellular activities at the microscale, possibly resulting in a microcolony with unitary structure and function.


Biofilms | 2006

Adaptation of microbial communities in soil contaminated with polychlorinated biphenyls, leading to the transformation of more highly chlorinated congeners in biofilm communities

A. J. Macedo; Thomas R. Neu; Ute Kuhlicke; W.-R. Abraham

A site polluted for many years with polychlorinated biphenyls (PCB) was used to elucidate the metabolic adaptation of microbial communities to these xenobiotics. Soil samples taken along a gradient of PCB-pollution at this site were used to grow biofilm communities on PCB oil. The biofilm communities originating from the non-polluted soil formed rather uniform and thin bacterial layers on PCB oil, while the biofilms originating from contaminated soil samples formed agglomerated structures on the PCB droplets. Biofilm communities were very diverse but those from highly polluted soil were dominated by Burkholderia species, a genus known for degrading several PCBs. All biofilm communities could transform low to medium chlorinated PCB congeners but a strong increase in the rate and degree of PCB transformation in communities from heavily polluted soil was observed. Notably, pentachlorinated congeners were transformed only by biofilms derived from the highly polluted soil but at the same time the content of trichlorinated congeners did not decrease. It is assumed that biofilms from the highly contaminated soil reductively dechlorinated PCB, converting pentachlorinated congeners to trichlorinated congeners in the spherical biofilm aggregates by diffusing to the surface of the aggregates, where aerobic transformation took place.


Frontiers in Microbiology | 2018

EPS glycoconjugate profiles shift as adaptive response in anaerobic microbial granulation at high salinity

Maria C. Gagliano; Thomas R. Neu; Ute Kuhlicke; Dainis Sudmalis; Hardy Temmink; Caroline M. Plugge

Anaerobic granulation at elevated salinities has been discussed in several analytical and engineering based studies. They report either enhanced or decreased efficiencies in relation to different Na+ levels. To evaluate this discrepancy, we focused on the microbial and structural dynamics of granules formed in two upflow anaerobic sludge blanket (UASB) reactors treating synthetic wastewater at low (5 g/L Na+) and high (20 g/L Na+) salinity conditions. Granules were successfully formed in both conditions, but at high salinity, the start-up inoculum quickly formed larger granules having a thicker gel layer in comparison to granules developed at low salinity. Granules retained high concentrations of sodium without any negative effect on biomass activity and structure. 16S rRNA gene analysis and Fluorescence in Situ Hybridization (FISH) identified the acetotrophic Methanosaeta harundinacea as the dominant microorganism at both salinities. Fluorescence lectin bar coding (FLBC) screening highlighted a significant shift in the glycoconjugate pattern between granules grown at 5 and 20 g/L of Na+, and the presence of different extracellular domains. The excretion of a Mannose-rich cloud-like glycoconjugate matrix, which seems to form a protective layer for some methanogenic cells clusters, was found to be the main distinctive feature of the microbial community grown at high salinity conditions.


Journal of Oral Microbiology | 2017

Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis

Pune N. Tawakoli; Thomas R. Neu; Mette Marie Busck; Ute Kuhlicke; Andreas Schramm; Thomas Attin; Daniel B. Wiedemeier; Sebastian Schlafer

ABSTRACT The extracellular matrix is a poorly studied, yet important component of dental biofilms. Fluorescence lectin-binding analysis (FLBA) is a powerful tool to characterize glycoconjugates in the biofilm matrix. This study aimed to systematically investigate the ability of 75 fluorescently labeled lectins to visualize and quantify extracellular glycoconjugates in dental biofilms. Lectin binding was screened on pooled supragingival biofilm samples collected from 76 subjects using confocal microscopy. FLBA was then performed with 10 selected lectins on biofilms grown in situ for 48 h in the absence of sucrose. For five lectins that proved particularly suitable, stained biovolumes were quantified and correlated to the bacterial composition of the biofilms. Additionally, combinations of up to three differently labeled lectins were tested. Of the 10 lectins, five bound particularly well in 48-h-biofilms: Aleuria aurantia (AAL), Calystega sepiem (Calsepa), Lycopersicon esculentum (LEA), Morniga-G (MNA-G) and Helix pomatia (HPA). No significant correlation between the binding of specific lectins and bacterial composition was found. Fluorescently labeled lectins enable the visualization of glycoconjugates in the dental biofilm matrix. The characterization and quantification of glycoconjugates in dental biofilms require a combination of several lectins. For 48-h-biofilms grown in absence of sucrose, AAL, Calsepa, HPA, LEA, and MNA-G are recommendable.

Collaboration


Dive into the Ute Kuhlicke's collaboration.

Top Co-Authors

Avatar

Thomas R. Neu

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Falk Harnisch

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Kenneth N. Timmis

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mario Vera

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Ruiyong Zhang

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Sören Bellenberg

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Uwe Schröder

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Sand

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Alexandre José Macedo

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge