Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ute M. Moll is active.

Publication


Featured researches published by Ute M. Moll.


Journal of Biological Chemistry | 2000

Death Signal-induced Localization of p53 Protein to Mitochondria A POTENTIAL ROLE IN APOPTOTIC SIGNALING

Natalie D. Marchenko; Alexander Zaika; Ute M. Moll

The mechanism of p53-mediated apoptosis after cellular stress remains poorly understood. Evidence suggests that p53 induces cell death by a multitude of molecular pathways involving activation of target genes and transcriptionally independent direct signaling. Mitochondria play a key role in apoptosis. We show here that a fraction of p53 protein localizes to mitochondria at the onset of p53-dependent apoptosis but not during p53-independent apoptosis or p53-mediated cell cycle arrest. The accumulation of p53 to mitochondria is rapid (within 1 h after p53 activation) and precedes changes in mitochondrial membrane potential, cytochromec release, and procaspase-3 activation. Immunoelectron microscopy and immuno-fluorescence-activated cell sorter analysis of isolated mitochondria show that the majority of mitochondrial p53 localizes to the membranous compartment, whereas a fraction is found in a complex with the mitochondrial import motor mt hsp70. After induction of ectopic p53 without additional DNA damage in p53-deficient cells, p53 again partially localizes to mitochondria, preceding the onset of apoptosis. Overexpression of anti-apoptotic Bcl-2 or Bcl-xL abrogates stress signal-mediated mitochondrial p53 accumulation and apoptosis but not cell cycle arrest, suggesting a feedback signaling loop between p53 and mitochondrial apoptotic regulators. Importantly, bypassing the nucleus by targeting p53 to mitochondria using import leader fusions is sufficient to induce apoptosis in p53-deficient cells. We propose a model where p53 can contribute to apoptosis by direct signaling at the mitochondria, thereby amplifying the transcription-dependent apoptosis of p53.


Nature Cell Biology | 2008

Regulation of autophagy by cytoplasmic p53

Ezgi Tasdemir; M. Chiara Maiuri; Lorenzo Galluzzi; Ilio Vitale; Mojgan Djavaheri-Mergny; Marcello D'Amelio; Alfredo Criollo; Eugenia Morselli; Changlian Zhu; Francis Harper; Ulf Nannmark; Chrysanthi Samara; Paolo Pinton; Jose Miguel Vicencio; Rosa Carnuccio; Ute M. Moll; Frank Madeo; Patrizia Paterlini-Bréchot; Rosario Rizzuto; Gérard Pierron; Klas Blomgren; Nektarios Tavernarakis; Patrice Codogno; Francesco Cecconi; Guido Kroemer

Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53−/− cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.


The EMBO Journal | 1999

A leucine‐rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking

Jayne M. Stommel; Natalie D. Marchenko; Gretchen S. Jimenez; Ute M. Moll; Thomas J. Hope; Geoffrey M. Wahl

Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine‐rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53‐binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53 NES is both necessary and sufficient for export. This report also demonstrates that the cytoplasmic localization of p53 in neuroblastoma cells is due to its hyperactive nuclear export: p53 in these cells can be trapped in the nucleus by the export‐inhibiting drug leptomycin B or by binding a p53‐tetramerization domain peptide that masks the NES. We propose a model in which regulated p53 tetramerization occludes its NES, thereby ensuring nuclear retention of the DNA‐binding form. We suggest that attenuation of p53 function involves the conversion of tetramers into monomers or dimers, in which the NES is exposed to the proteins which mediate their export to the cytoplasm.


Cell Death & Differentiation | 2009

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

Lorenzo Galluzzi; Stuart A. Aaronson; John M. Abrams; Emad S. Alnemri; David W. Andrews; Eric H. Baehrecke; Nicolas G. Bazan; Mikhail V. Blagosklonny; Klas Blomgren; Christoph Borner; Dale E. Bredesen; Catherine Brenner; Maria Castedo; John A. Cidlowski; Aaron Ciechanover; Gerald M. Cohen; V De Laurenzi; R De Maria; Mohanish Deshmukh; Brian David Dynlacht; Wafik S. El-Deiry; Richard A. Flavell; Simone Fulda; Carmen Garrido; Pierre Golstein; Marie Lise Gougeon; Douglas R. Green; Hinrich Gronemeyer; György Hajnóczky; J. M. Hardwick

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.


Cell | 2012

p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis

Angelina V. Vaseva; Natalie D. Marchenko; Kyungmin Ji; Stella E. Tsirka; Sonja Holzmann; Ute M. Moll

Ischemia-associated oxidative damage leading to necrosis is a major cause of catastrophic tissue loss, and elucidating its signaling mechanism is therefore of paramount importance. p53 is a central stress sensor responding to multiple insults, including oxidative stress to orchestrate apoptotic and autophagic cell death. Whether p53 can also activate oxidative stress-induced necrosis is, however, unknown. Here, we uncover a role for p53 in activating necrosis. In response to oxidative stress, p53 accumulates in the mitochondrial matrix and triggers mitochondrial permeability transition pore (PTP) opening and necrosis by physical interaction with the PTP regulator cyclophilin D (CypD). Intriguingly, a robust p53-CypD complex forms during brain ischemia/reperfusion injury. In contrast, reduction of p53 levels or cyclosporine A pretreatment of mice prevents this complex and is associated with effective stroke protection. Our study identifies the mitochondrial p53-CypD axis as an important contributor to oxidative stress-induced necrosis and implicates this axis in stroke pathology.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Aristolochic acid and the etiology of endemic (Balkan) nephropathy

Arthur P. Grollman; Shinya Shibutani; Masaaki Moriya; Frederick Miller; Lin Wu; Ute M. Moll; Naomi Suzuki; Andrea Fernandes; Thomas A. Rosenquist; Zvonimir Medverec; Krunoslav Jakovina; Branko Brdar; Neda Slade; Robert J. Turesky; Angela K. Goodenough; Robert A. Rieger; Mato Vukelić; Bojan Jelaković

Endemic (Balkan) nephropathy (EN), a devastating renal disease affecting men and women living in rural areas of Bosnia, Bulgaria, Croatia, Romania, and Serbia, is characterized by its insidious onset, invariable progression to chronic renal failure and a strong association with transitional cell (urothelial) carcinoma of the upper urinary tract. Significant epidemiologic features of EN include its focal occurrence in certain villages and a familial, but not inherited, pattern of disease. Our experiments test the hypothesis that chronic dietary poisoning by aristolochic acid is responsible for EN and its associated urothelial cancer. Using 32P-postlabeling/PAGE and authentic standards, we identified dA-aristolactam (AL) and dG-AL DNA adducts in the renal cortex of patients with EN but not in patients with other chronic renal diseases. In addition, urothelial cancer tissue was obtained from residents of endemic villages with upper urinary tract malignancies. The AmpliChip p53 microarray was then used to sequence exons 2–11 of the p53 gene where we identified 19 base substitutions. Mutations at A:T pairs accounted for 89% of all p53 mutations, with 78% of these being A:T → T:A transversions. Our experimental results, namely, that (i) DNA adducts derived from aristolochic acid (AA) are present in renal tissues of patients with documented EN, (ii) these adducts can be detected in transitional cell cancers, and (iii) A:T → T:A transversions dominate the p53 mutational spectrum in the upper urinary tract malignancies found in this population lead to the conclusion that dietary exposure to AA is a significant risk factor for EN and its attendant transitional cell cancer.


Cancer Research | 2008

p53-Responsive MicroRNAs 192 and 215 Are Capable of Inducing Cell Cycle Arrest

Christian Braun; Xin Zhang; Irina Savelyeva; Sonja Wolff; Ute M. Moll; Troels Schepeler; Torben F. Ørntoft; Claus L. Andersen; Matthias Dobbelstein

microRNAs provide a novel layer of regulation for gene expression by interfering with the stability and/or translation of specific target mRNAs. Overall levels of microRNAs are frequently down-regulated in cancer cells, and reducing general microRNA processing increases cancerogenesis in transgenic models, suggesting that at least some microRNAs might act as effectors in tumor suppression. Accordingly, the tumor suppressor p53 up-regulates miR-34a, a microRNA that contributes to apoptosis and acute senescence. Here, we used array hybridization to find that p53 induces two additional, mutually related clusters of microRNAs, leading to the up-regulation of miR-192, miR-194, and miR-215. The same microRNAs were detected at high levels in normal colon tissue but were severely reduced in many colon cancer samples. On the other hand, miR-192 and its cousin miR-215 can each contribute to enhanced CDKN1A/p21 levels, colony suppression, cell cycle arrest, and cell detachment from a solid support. These effects were partially dependent on the presence of wild-type p53. Antagonizing endogenous miR-192 attenuated 5-fluorouracil-induced accumulation of p21. Hence, miR-192 and miR-215 can act as effectors as well as regulators of p53; they seem to suppress cancerogenesis through p21 accumulation and cell cycle arrest.


Biochimica et Biophysica Acta | 2009

The mitochondrial p53 pathway

Angelina V. Vaseva; Ute M. Moll

p53 is one of the most mutated tumor suppressors in human cancers and as such has been intensively studied for a long time. p53 is a major orchestrator of the cellular response to a broad array of stress types by regulating apoptosis, cell cycle arrest, senescence, DNA repair and genetic stability. For a long time it was thought that these functions of p53 solely rely on its function as a transcription factor, and numerous p53 target genes have been identified [1]. In the last 8 years however, a novel transcription-independent proapoptotic function mediated by the cytoplasmic pool of p53 has been revealed. p53 participates directly in the intrinsic apoptosis pathway by interacting with the multidomain members of the Bcl-2 family to induce mitochondrial outer membrane permeabilization. Our review will discuss these studies, focusing on recent advances in the field.


Molecular and Cellular Biology | 2004

In Vivo Mitochondrial p53 Translocation Triggers a Rapid First Wave of Cell Death in Response to DNA Damage That Can Precede p53 Target Gene Activation

Susan Erster; Motohiro Mihara; Roger H. Kim; Oleksi Petrenko; Ute M. Moll

ABSTRACT p53 promotes apoptosis in response to death stimuli by transactivation of target genes and by transcription-independent mechanisms. We recently showed that wild-type p53 rapidly translocates to mitochondria in response to multiple death stimuli in cultured cells. Mitochondrial p53 physically interacts with antiapoptotic Bcl proteins, induces Bak oligomerization, permeabilizes mitochondrial membranes, and rapidly induces cytochrome c release. Here we characterize the mitochondrial p53 response in vivo. Mice were subjected to γ irradiation or intravenous etoposide administration, followed by cell fractionation and immunofluorescence studies of various organs. Mitochondrial p53 accumulation occurred in radiosensitive organs like thymus, spleen, testis, and brain but not in liver and kidney. Of note, mitochondrial p53 translocation was rapid (detectable at 30 min in thymus and spleen) and triggered an early wave of marked caspase 3 activation and apoptosis. This caspase 3-mediated apoptosis was entirely p53 dependent, as shown by p53 null mice, and preceded p53 target gene activation. The transcriptional p53 program had a longer lag phase than the rapid mitochondrial p53 program. In thymus, the earliest apoptotic target gene products PUMA, Noxa, and Bax appeared at 2, 4, and 8 h, respectively, while Bid, Killer/DR5, and p53DinP1 remained uninduced even after 20 h. Target gene induction then led to further increase in active caspase 3. Similar biphasic kinetics was seen in cultured human cells. Our results suggest that in sensitive organs mitochondrial p53 accumulation in vivo occurs soon after a death stimulus, triggering a rapid first wave of apoptosis that is transcription independent and may precede a second slower wave that is transcription dependent.


Journal of Experimental Medicine | 2002

ΔNp73, A Dominant-Negative Inhibitor of Wild-type p53 and TAp73, Is Up-regulated in Human Tumors

Alex I. Zaika; Neda Slade; Susan Erster; Christine Sansome; Troy W. Joseph; Michael L. Pearl; Eva Chalas; Ute M. Moll

p73 has significant homology to p53. However, tumor-associated up-regulation of p73 and genetic data from human tumors and p73-deficient mice exclude a classical Knudson-type tumor suppressor role. We report that the human TP73 gene generates an NH2 terminally truncated isoform. ΔNp73 derives from an alternative promoter in intron 3 and lacks the transactivation domain of full-length TAp73. ΔNp73 is frequently overexpressed in a variety of human cancers, but not in normal tissues. ΔNp73 acts as a potent transdominant inhibitor of wild-type p53 and transactivation-competent TAp73. ΔNp73 efficiently counteracts transactivation function, apoptosis, and growth suppression mediated by wild-type p53 and TAp73, and confers drug resistance to wild-type p53 harboring tumor cells. Conversely, down-regulation of endogenous ΔNp73 levels by antisense methods alleviates its suppressive action and enhances p53- and TAp73-mediated apoptosis. ΔNp73 is complexed with wild-type p53, as demonstrated by coimmunoprecipitation from cultured cells and primary tumors. Thus, ΔNp73 mediates a novel inactivation mechanism of p53 and TAp73 via a dominant-negative family network. Deregulated expression of ΔNp73 can bestow oncogenic activity upon the TP73 gene by functionally inactivating the suppressor action of p53 and TAp73. This trait might be selected for in human cancers.

Collaboration


Dive into the Ute M. Moll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neda Slade

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Ramona Schulz

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge