Utku Avci
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Utku Avci.
Plant Physiology | 2010
Sivakumar Pattathil; Utku Avci; David Baldwin; Alton G. Swennes; Janelle A. McGill; Zoë A. Popper; Tracey Bootten; Anathea Albert; Ruth H. Davis; Chakravarthy Chennareddy; Ruihua Dong; Beth O'Shea; Ray Rossi; Christine Leoff; Glenn Freshour; Rajesh Narra; Malcolm O'Neil; William S. York; Michael G. Hahn
A collection of 130 new plant cell wall glycan-directed monoclonal antibodies (mAbs) was generated with the aim of facilitating in-depth analysis of cell wall glycans. An enzyme-linked immunosorbent assay-based screen against a diverse panel of 54 plant polysaccharides was used to characterize the binding patterns of these new mAbs, together with 50 other previously generated mAbs, against plant cell wall glycans. Hierarchical clustering analysis was used to group these mAbs based on the polysaccharide recognition patterns observed. The mAb groupings in the resulting cladogram were further verified by immunolocalization studies in Arabidopsis (Arabidopsis thaliana) stems. The mAbs could be resolved into 19 clades of antibodies that recognize distinct epitopes present on all major classes of plant cell wall glycans, including arabinogalactans (both protein- and polysaccharide-linked), pectins (homogalacturonan, rhamnogalacturonan I), xyloglucans, xylans, mannans, and glucans. In most cases, multiple subclades of antibodies were observed to bind to each glycan class, suggesting that the mAbs in these subgroups recognize distinct epitopes present on the cell wall glycans. The epitopes recognized by many of the mAbs in the toolkit, particularly those recognizing arabinose- and/or galactose-containing structures, are present on more than one glycan class, consistent with the known structural diversity and complexity of plant cell wall glycans. Thus, these cell wall glycan-directed mAbs should be viewed and utilized as epitope-specific, rather than polymer-specific, probes. The current world-wide toolkit of approximately 180 glycan-directed antibodies from various laboratories provides a large and diverse set of probes for studies of plant cell wall structure, function, dynamics, and biosynthesis.
The Plant Cell | 2013
Li Tan; Stefan Eberhard; Sivakumar Pattathil; Clayton Warder; John Glushka; Chunhua Yuan; Zhangying Hao; Xiang Zhu; Utku Avci; Jeffrey S. Miller; David Baldwin; Charles Pham; Ron Orlando; Alan G. Darvill; Michael G. Hahn; Marcia J. Kieliszewski; Debra Mohnen
Pectin and xylan are generally considered as separate cell wall glycan networks distinct from cell wall proteins. This work describes a cell wall proteoglycan with pectin and arabinoxylan covalently attached to an arabinogalactan protein, identifying a cross-linked matrix polysaccharide wall protein architecture with implications for wall structure, function, and synthesis. Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Huanzhong Wang; Utku Avci; Jin Nakashima; Michael G. Hahn; Fang Chen; Richard A. Dixon
Stems of dicotyledonous plants consist of an outer epidermis, a cortex, a ring of secondarily thickened vascular bundles and interfascicular cells, and inner pith parenchyma cells with thin primary walls. It is unclear how the different cell layers attain and retain their identities. Here, we show that WRKY transcription factors are in part responsible for the parenchymatous nature of the pith cells in dicotyledonous plants. We isolated mutants of Medicago truncatula and Arabidopsis thaliana with secondary cell wall thickening in pith cells associated with ectopic deposition of lignin, xylan, and cellulose, leading to an ∼50% increase in biomass density in stem tissue of the Arabidopsis mutants. The mutations are caused by disruption of stem-expressed WRKY transcription factor (TF) genes, which consequently up-regulate downstream genes encoding the NAM, ATAF1/2, and CUC2 (NAC) and CCCH type (C3H) zinc finger TFs that activate secondary wall synthesis. Direct binding of WRKY to the NAC gene promoter and repression of three downstream TFs were confirmed by in vitro assays and in planta transgenic experiments. Secondary wall-bearing cells form lignocellulosic biomass that is the source for second generation biofuel production. The discovery of negative regulators of secondary wall formation in pith opens up the possibility of significantly increasing the mass of fermentable cell wall components in bioenergy crops.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Breeanna R. Urbanowicz; Maria J. Peña; Supriya Ratnaparkhe; Utku Avci; Jason Backe; Heather F. Steet; Marcus Foston; Hongjia Li; Malcolm A. O’Neill; Arthur J. Ragauskas; Alan G. Darvill; Charles E. Wyman; Harry J. Gilbert; William S. York
The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1, which was previously classified as a domain of unknown function (DUF) 579 protein, specifically transfers the methyl group from S-adenosyl-l-methionine to O-4 of α-d-glucopyranosyluronic acid residues that are linked to O-2 of the xylan backbone. Biochemical characterization of the recombinant enzyme indicates that GXMT1 is localized in the Golgi apparatus and requires Co2+ for optimal activity in vitro. Plants lacking GXMT1 synthesize glucuronoxylan in which the degree of 4-O-methylation is reduced by 75%. This result is correlated to a change in lignin monomer composition and an increase in glucuronoxylan release during hydrothermal treatment of secondary cell walls. We propose that the DUF579 proteins constitute a previously undescribed family of cation-dependent, polysaccharide-specific O-methyl-transferases. This knowledge provides new opportunities to selectively manipulate polysaccharide O-methylation and extends the portfolio of structural targets that can be modified either alone or in combination to modulate biopolymer interactions in the plant cell wall.
Methods of Molecular Biology | 2012
Sivakumar Pattathil; Utku Avci; Jeffrey S. Miller; Michael G. Hahn
The native complexity of plant cell walls makes research on them challenging. Hence, it is advantageous to have a diversity of tools that can be used to analyze and characterize plant cell walls. In this chapter, we describe one of two immunological approaches that can be employed for screening of plant cell wall/biomass materials from diverse plants and tissues. This approach, Glycome Profiling, lends itself well to moderate to high-throughput screening of plant cell wall/biomass samples. Glycome Profiling is being further optimized to reduce the amount of sample required for the analysis, and to improve the sensitivity and throughput of the assay. We are optimistic that Glycome Profiling will prove to be a broadly applicable experimental approach that will find increasing application to a wide variety of studies on plant cell wall/biomass samples.
Energy and Environmental Science | 2011
Jaclyn D. DeMartini; Sivakumar Pattathil; Utku Avci; Kaitlyn Szekalski; Koushik Mazumder; Michael G. Hahn; Charles E. Wyman
To better understand how hydrothermal pretreatment reduces plant cell wall recalcitrance, we applied a high throughput approach (“glycome profiling”) using a comprehensive suite of plant glycan-directed monoclonal antibodies to monitor structural/extractability changes in Populus biomass. The results of glycome profiling studies were verified by immunolabeling using selected antibodies from the same toolkit. The array of monoclonal antibodies employed in these studies is large enough to monitor changes occurring in most plant cell wall polysaccharides. Results from these techniques demonstrate the sequence of structural changes that occur in plant cell walls during pretreatment-induced deconstruction, namely, the initial disruption of lignin-polysaccharide interactions in concert with a loss of pectins and arabinogalactans; this is followed by significant removal of xylans and xyloglucans. Additionally, this study also suggests that lignin content per se does not affect recalcitrance; instead, the integration of lignin and polysaccharides within cell walls, and their associations with one another, play a larger role.
Plant Physiology | 2012
Olga A. Zabotina; Utku Avci; David Cavalier; Sivakumar Pattathil; Yi Hsiang Chou; Stefan Eberhard; Linda Danhof; Kenneth Keegstra; Michael G. Hahn
Xyloglucan is an important hemicellulosic polysaccharide in dicot primary cell walls. Most of the enzymes involved in xyloglucan synthesis have been identified. However, many important details of its synthesis in vivo remain unknown. The roles of three genes encoding xylosyltransferases participating in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana) were further investigated using reverse genetic, biochemical, and immunological approaches. New double mutants (xxt1 xxt5 and xxt2 xxt5) and a triple mutant (xxt1 xxt2 xxt5) were generated, characterized, and compared with three single mutants and the xxt1 xxt2 double mutant that had been isolated previously. Antibody-based glycome profiling was applied in combination with chemical and immunohistochemical analyses for these characterizations. From the combined data, we conclude that XXT1 and XXT2 are responsible for the bulk of the xylosylation of the glucan backbone, and at least one of these proteins must be present and active for xyloglucan to be made. XXT5 plays a significant but as yet uncharacterized role in this process. The glycome profiling data demonstrate that the lack of detectable xyloglucan does not cause significant compensatory changes in other polysaccharides, although changes in nonxyloglucan polysaccharide amounts cannot be ruled out. Structural rearrangements of the polysaccharide network appear responsible for maintaining wall integrity in the absence of xyloglucan, thereby allowing nearly normal plant growth in plants lacking xyloglucan. Finally, results from immunohistochemical studies, combined with known information about expression patterns of the three genes, suggest that different combinations of xylosyltransferases contribute differently to xyloglucan biosynthesis in the various cell types found in stems, roots, and hypocotyls.
Plant Physiology | 2009
Bir Singh; Utku Avci; Sarah E. Inwood; Mark J. Grimson; Jeff Landgraf; Debra Mohnen; Iben Sørensen; Curtis G. Wilkerson; William G. T. Willats; Candace H. Haigler
Cotton (Gossypium hirsutum) provides the worlds dominant renewable textile fiber, and cotton fiber is valued as a research model because of its extensive elongation and secondary wall thickening. Previously, it was assumed that fibers elongated as individual cells. In contrast, observation by cryo-field emission-scanning electron microscopy of cotton fibers developing in situ within the boll demonstrated that fibers elongate within tissue-like bundles. These bundles were entrained by twisting fiber tips and consolidated by adhesion of a cotton fiber middle lamella (CFML). The fiber bundles consolidated via the CFML ultimately formed a packet of fiber around each seed, which helps explain how thousands of cotton fibers achieve their great length within a confined space. The cell wall nature of the CFML was characterized using transmission electron microscopy, including polymer epitope labeling. Toward the end of elongation, up-regulation occurred in gene expression and enzyme activities related to cell wall hydrolysis, and targeted breakdown of the CFML restored fiber individuality. At the same time, losses occurred in certain cell wall polymer epitopes (as revealed by comprehensive microarray polymer profiling) and sugars within noncellulosic matrix components (as revealed by gas chromatography-mass spectrometry analysis of derivatized neutral and acidic glycosyl residues). Broadly, these data show that adhesion modulated by an outer layer of the primary wall can coordinate the extensive growth of a large group of cells and illustrate dynamic changes in primary wall structure and composition occurring during the differentiation of one cell type that spends only part of its life as a tissue.
Glycobiology | 2012
Ameya R. Kulkarni; Maria Pena; Utku Avci; Koushik Mazumder; Breeanna Urbanowicz; Sivakumar Pattathil; Yanbin Yin; Malcolm A O'Neill; Alison W. Roberts; Michael G Hahn; Ying Xu; Alan G. Darvill; William S. York
Glucuronoxylans with a backbone of 1,4-linked β-D-xylosyl residues are ubiquitous in the secondary walls of gymnosperms and angiosperms. Xylans have been reported to be present in hornwort cell walls, but their structures have not been determined. In contrast, the presence of xylans in the cell walls of mosses and liverworts remains a subject of debate. Here we present data that unequivocally establishes that the cell walls of leafy tissue and axillary hair cells of the moss Physcomitrella patens contain a glucuronoxylan that is structurally similar to glucuronoxylans in the secondary cell walls of vascular plants. Some of the 1,4-linked β-D-xylopyranosyl residues in the backbone of this glucuronoxylan bear an α-D-glucosyluronic acid (GlcpA) sidechain at O-2. In contrast, the lycopodiophyte Selaginella kraussiana synthesizes a glucuronoxylan substituted with 4-O-Me-α-D-GlcpA sidechains, as do many hardwood species. The monilophyte Equisetum hyemale produces a glucuronoxylan with both 4-O-Me-α-D-GlcpA and α-D-GlcpA sidechains, as does Arabidopsis. The seedless plant glucuronoxylans contain no discernible amounts of the reducing-end sequence that is characteristic of gymnosperm and eudicot xylans. Phylogenetic studies showed that the P. patens genome contains genes with high sequence similarity to Arabidopsis CAZy family GT8, GT43 and GT47 glycosyltransferases that are likely involved in xylan synthesis. We conclude that mosses synthesize glucuronoxylan that is structurally similar to the glucuronoxylans present in the secondary cell walls of lycopodiophytes, monilophytes, and many seed-bearing plants, and that several of the glycosyltransferases required for glucuronoxylan synthesis evolved before the evolution of tracheophytes.
Journal of Biological Chemistry | 2014
Xiaoyang Zhang; Artur Rogowski; Lei Zhao; Michael G. Hahn; Utku Avci; J. Paul Knox; Harry J. Gilbert
Background: The molecular architectures of cell wall degrading enzymes are complex. Results: The activity of mannanases and esterases and CBM function against cell walls are driven by substrate context. Conclusion: GH26 and GH5 mannanases target soluble and cell wall mannans, respectively, and CBM potentiation is cell wall-dependent. Significance: The context of cell wall polysaccharides drives the molecular architectures of cell wall-degrading enzymes. Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.