Uttam K. Rao
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uttam K. Rao.
Immunity | 2012
Alan M. Hanash; Jarrod A. Dudakov; Guoqiang Hua; Margaret H. O’Connor; Lauren F. Young; Natalie V. Singer; Mallory L. West; Robert R. Jenq; Amanda M. Holland; Lucy W. Kappel; Arnab Ghosh; Jennifer J. Tsai; Uttam K. Rao; Nury Yim; Odette M. Smith; Enrico Velardi; Elena B. Hawryluk; George F. Murphy; Chen Liu; Lynette A. Fouser; Richard Kolesnick; Bruce R. Blazar; Marcel R.M. van den Brink
Little is known about the maintenance of intestinal stem cells (ISCs) and progenitors during immune-mediated tissue damage or about the susceptibility of transplant recipients to tissue damage mediated by the donor immune system during graft versus host disease (GVHD). We demonstrate here that deficiency of recipient-derived IL-22 increased acute GVHD tissue damage and mortality, that ISCs were eliminated during GVHD, and that ISCs as well as their downstream progenitors expressed the IL-22 receptor. Intestinal IL-22 was produced after bone marrow transplant by IL-23-responsive innate lymphoid cells (ILCs) from the transplant recipients, and intestinal IL-22 increased in response to pretransplant conditioning. However, ILC frequency and IL-22 amounts were decreased by GVHD. Recipient IL-22 deficiency led to increased crypt apoptosis, depletion of ISCs, and loss of epithelial integrity. Our findings reveal IL-22 as a critical regulator of tissue sensitivity to GVHD and a protective factor for ISCs during inflammatory intestinal damage.
Journal of Experimental Medicine | 2009
Olaf Penack; Odette M. Smith; Amy Cunningham-Bussel; Xin Liu; Uttam K. Rao; Nury Yim; Il-Kang Na; Amanda M. Holland; Arnab Ghosh; Sydney X. Lu; Robert R. Jenq; Chen Liu; George F. Murphy; Katharina Brandl; Marcel R.M. van den Brink
Nucleotide-binding oligomerization domain 2 (NOD2) polymorphisms are independent risk factors for Crohns disease and graft-versus-host disease (GVHD). In Crohns disease, the proinflammatory state resulting from NOD2 mutations have been associated with a loss of antibacterial function of enterocytes such as paneth cells. NOD2 has not been studied in experimental allogeneic bone marrow transplantation (allo-BMT). Using chimeric recipients with NOD2−/− hematopoietic cells, we demonstrate that NOD2 deficiency in host hematopoietic cells exacerbates GVHD. We found that proliferation and activation of donor T cells was enhanced in NOD-deficient allo-BMT recipients, suggesting that NOD2 plays a role in the regulation of host antigen-presenting cells (APCs). Next, we used bone marrow chimeras in an experimental colitis model and observed again that NOD2 deficiency in the hematopoietic cells results in increased intestinal inflammation. We conclude that NOD2 regulates the development of GVHD through its inhibitory effect on host APC function.
Blood | 2011
Alan M. Hanash; Lucy W. Kappel; Nury Yim; Rebecca A. Nejat; Gabrielle L. Goldberg; Odette M. Smith; Uttam K. Rao; Lindsay Dykstra; Il-Kang Na; Amanda M. Holland; Jarrod A. Dudakov; Chen Liu; George F. Murphy; Warren J. Leonard; Glenn Heller; Marcel R.M. van den Brink
IL-21 is a proinflammatory cytokine produced by Th17 cells. Abrogation of IL-21 signaling has recently been shown to reduce GVHD while retaining graft-versus-leukemia/lymphoma (GVL) responses. However, the mechanisms by which IL-21 may lead to a separation of GVHD and GVL remain incompletely understood. In a murine MHC-mismatched BM transplantation model, we observed that IL-21 receptor knockout (IL-21R KO) donor T cells mediate decreased systemic and gastrointestinal GVHD in recipients of a transplant. This reduction in GVHD was associated with expansion of transplanted donor regulatory T cells and with tissue-specific modulation of Th-cell function. IL-21R KO and wild-type donor T cells showed equivalent alloactivation, but IL-21R KO T cells showed decreased infiltration and inflammatory cytokine production within the mesenteric lymph nodes. However, Th-cell cytokine production was maintained peripherally, and IL-21R KO T cells mediated equivalent immunity against A20 and P815 hematopoietic tumors. In summary, abrogation of IL-21 signaling in donor T cells leads to tissue-specific modulation of immunity, such that gastrointestinal GVHD is reduced, but peripheral T-cell function and GVL capacity are retained. IL-21 is thus an exciting target for therapeutic intervention and improvement of clinical transplantation outcomes.
Journal of Clinical Investigation | 2010
Il-Kang Na; Sydney X. Lu; Nury Yim; Gabrielle L. Goldberg; Jennifer J. Tsai; Uttam K. Rao; Odette M. Smith; Christopher King; David Suh; Daniel Hirschhorn-Cymerman; Lia Palomba; Olaf Penack; Amanda M. Holland; Robert R. Jenq; Arnab Ghosh; Hien Tran; Taha Merghoub; Chen Liu; Gregory D. Sempowski; Melissa S. Ventevogel; Nicole Beauchemin; Marcel R.M. van den Brink
Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.
Blood | 2010
Il-Kang Na; John C. Markley; Jennifer J. Tsai; Nury Yim; Bradley J. Beattie; Alexander D. Klose; Amanda M. Holland; Arnab Ghosh; Uttam K. Rao; Matthias T. Stephan; Inna Serganova; Elmer Santos; Renier J. Brentjens; Ronald G. Blasberg; Michel Sadelain; Marcel R.M. van den Brink
We have developed a dual bioluminescent reporter system allowing noninvasive, concomitant imaging of T-cell trafficking, expansion, and activation of nuclear factor of activated T cells (NFAT) in vivo. NFAT activation plays an important role in T-cell activation and T-cell development. Therefore we used this system to determine spatial-temporal activation patterns of (1) proliferating T lymphocytes during graft-versus-host disease (GVHD) and (2) T-cell precursors during T-cell development after allogeneic hematopoietic stem cell transplantation (HSCT). In the first days after HSCT, donor T cells migrated to the peripheral lymph nodes and the intestines, whereas the NFAT activation was dominant in the intestines, suggesting an important role for the intestines in the early stages of alloactivation during development of GVHD. After adoptive transfer of in vitro-derived T-cell receptor (TCR) H-Y transgenic T-cell precursors into B6 (H-2(b)) hosts of both sexes, NFAT signaling and development into CD4(+) or CD8(+) single-positive cells could only be detected in the thymus of female recipients indicating either absence of positive selection or prompt depletion of double-positive thymocytes in the male recipients. Because NFAT plays an important role in a wide range of cell types, our system could provide new insights into a variety of biologic processes.
Blood | 2008
Robert R. Jenq; Christopher King; Christine Volk; David Suh; Odette M. Smith; Uttam K. Rao; Nury Yim; Amanda M. Holland; Sydney X. Lu; Johannes L. Zakrzewski; Gabrielle L. Goldberg; Adi Diab; Onder Alpdogan; Olaf Penack; Il-Kang Na; Lucy W. Kappel; Jedd D. Wolchok; Alan N. Houghton; Miguel Angel Perales; Marcel R.M. van den Brink
Keratinocyte growth factor (KGF), which is given exogenously to allogeneic bone marrow transplantation (allo-BMT) recipients, supports thymic epithelial cells and increases thymic output of naive T cells. Here, we demonstrate that this improved T-cell reconstitution leads to enhanced responses to DNA plasmid tumor vaccination. Tumor-bearing mice treated with KGF and DNA vaccination have improved long-term survival and decreased tumor burden after allo-BMT. When assayed before vaccination, KGF-treated allo-BMT recipients have increased numbers of peripheral T cells, including CD8(+) T cells with vaccine-recognition potential. In response to vaccination, KGF-treated allo-BMT recipients, compared with control subjects, generate increased numbers of tumor-specific CD8(+) cells, as well as increased numbers of CD8(+) cells producing interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). We also found unanticipated benefits to antitumor immunity with the administration of KGF. KGF-treated allo-BMT recipients have an improved ratio of T effector cells to regulatory T cells, a larger fraction of effector cells that display a central memory phenotype, and effector cells that are derived from a broader T-cell-receptor repertoire. In conclusion, our data suggest that KGF can function as a potent vaccine adjuvant after allo-BMT through its effects on posttransplantation T-cell reconstitution.
Journal of Clinical Investigation | 2013
Arnab Ghosh; Yildirim Dogan; Maxim Moroz; Amanda M. Holland; Nury Yim; Uttam K. Rao; Lauren F. Young; Daniel Tannenbaum; Durva Masih; Enrico Velardi; Jennifer J. Tsai; Robert R. Jenq; Olaf Penack; Alan M. Hanash; Odette M. Smith; Kelly Piersanti; Cecilia Lezcano; George F. Murphy; Chen Liu; M. Lia Palomba; Martin G. Sauer; Michel Sadelain; Vladimir Ponomarev; Marcel R.M. van den Brink
Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro-generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD.
Journal of Immunology | 2010
Sydney X. Lu; Amanda M. Holland; Il-Kang Na; Theis H. Terwey; Onder Alpdogan; Jhoanne Bautista; Odette M. Smith; David Suh; Christopher King; Adam A. Kochman; Vanessa M. Hubbard; Uttam K. Rao; Nury Yim; Chen Liu; Alvaro C. Laga; George F. Murphy; Robert R. Jenq; Johannes L. Zakrzewski; Olaf Penack; Lindsay Dykstra; Kevin Bampoe; Lia Perez; Bruce Furie; Barbara C. Furie; Marcel R.M. van den Brink
Alloreactive T cells are crucial for graft-versus-host disease (GVHD) pathophysiology, and modulating their trafficking patterns has been efficacious in ameliorating experimental disease. We report in this paper that P-selectin, a glycoprotein found on resting and inflamed endothelium, is important for donor alloreactive T cells trafficking into GVHD target organs, such as the intestines and skin. Compared with wild-type (WT) recipients of allogeneic bone marrow transplantation, P-selectin−/− recipients exhibit decreased GVHD mortality and decreased GVHD of the skin, liver, and small bowels. This was associated with diminished infiltration of alloactivated T cells into the Peyer’s patches and small bowels, coupled with increased numbers of donor T cells in the spleen and secondary lymphoid organs (SLOs). Surprisingly, however, donor T cells deficient for P-selectin glycoprotein ligand 1, the most well described P-selectin ligand, mediated GVHD similar to WT T cells and accumulated in SLO and target organs in similar numbers as WT T cells. This suggests that P-selectin may be required for trafficking into inflamed tissues but not SLO and that donor T cells may use multiple P-selectin ligands apart from P-selectin glycoprotein ligand 1 to interact with P-selectin and traffic into inflamed tissues during GVHD. We conclude that targeting P-selectin may be a viable strategy for GVHD prophylaxis or treatment.
Cancer Research | 2013
Arnab Ghosh; Amanda M. Holland; Yildirim Dogan; Nury Yim; Uttam K. Rao; Lauren Young; Mallory L. West; Natalie V. Singer; Lee H; Il-Kang Na; Jennifer J. Tsai; Robert R. Jenq; Olaf Penack; Alan M. Hanash; Cecilia Lezcano; George F. Murphy; Chen Liu; Michel Sadelain; Sauer Mg; Sant'angelo D; van den Brink Mr
Efforts to limit GVHD mediated by alloreactive donor T cells after allogeneic bone marrow transplantation are limited by a concomitant decrease in graft-versus-tumor (GVT) activity and increased possibilities of tumor relapse. Using a novel approach, we adoptively transferred conventional T cells expressing the transcription factor promyelocytic leukemia zinc finger (PLZF), which confers effector properties resembling invariant natural killer T cells, such as copious production of cytokines under suboptimal stimulation. PLZF expression in T-cell allografts attenuates expansion of alloreactive T cells, leading to lower GVHD. Intact alloreactivity-driven antitumor cytokine responses result in preserved GVT effects, leading to improved survival. Our findings suggest that therapy with PLZF-overexpressing T cells would result in overall improved outcomes due to less GVHD and intact GVT effects.
PLOS ONE | 2011
Sydney X. Lu; Lucy W. Kappel; Anne-Marie Charbonneau-Allard; Renée Atallah; Amanda M. Holland; Claire Turbide; Vanessa M. Hubbard; Jimmy A. Rotolo; M. Smith; David B Suh; Christopher King; Uttam K. Rao; Nury Yim; Johanne L. Bautista; Robert R. Jenq; Olaf Penack; Il-Kang Na; Chen Liu; George F. Murphy; Onder Alpdogan; Richard S. Blumberg; Fernando Macian; Kathryn V. Holmes; Nicole Beauchemin; Marcel R.M. van den Brink
Background Allogeneic bone marrow transplantation (allo-BMT) is a potentially curative therapy for a variety of hematologic diseases, but benefits, including graft-versus-tumor (GVT) activity are limited by graft-versus-host-disease (GVHD). Carcinoembryonic antigen related cell adhesion molecule 1 (Ceacam1) is a transmembrane glycoprotein found on epithelium, T cells, and many tumors. It regulates a variety of physiologic and pathological processes such as tumor biology, leukocyte activation, and energy homeostasis. Previous studies suggest that Ceacam1 negatively regulates inflammation in inflammatory bowel disease models. Methods We studied Ceacam1 as a regulator of GVHD and GVT after allogeneic bone marrow transplantation (allo-BMT) in mouse models. In vivo, Ceacam1−/− T cells caused increased GVHD mortality and GVHD of the colon, and greater numbers of donor T cells were positive for activation markers (CD25hi, CD62Llo). Additionally, Ceacam1−/− CD8 T cells had greater expression of the gut-trafficking integrin α4β7, though both CD4 and CD8 T cells were found increased numbers in the gut post-transplant. Ceacam1−/− recipients also experienced increased GVHD mortality and GVHD of the colon, and alloreactive T cells displayed increased activation. Additionally, Ceacam1−/− mice had increased mortality and decreased numbers of regenerating small intestinal crypts upon radiation exposure. Conversely, Ceacam1-overexpressing T cells caused attenuated target-organ and systemic GVHD, which correlated with decreased donor T cell numbers in target tissues, and mortality. Finally, graft-versus-tumor survival in a Ceacam1+ lymphoma model was improved in animals receiving Ceacam1−/− vs. control T cells. Conclusions We conclude that Ceacam1 regulates T cell activation, GVHD target organ damage, and numbers of donor T cells in lymphoid organs and GVHD target tissues. In recipients of allo-BMT, Ceacam1 may also regulate tissue radiosensitivity. Because of its expression on both the donor graft and host tissues, this suggests that targeting Ceacam1 may represent a potent strategy for the regulation of GVHD and GVT after allogeneic transplantation.