Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uwe Druege is active.

Publication


Featured researches published by Uwe Druege.


Plant Journal | 2010

Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning

Florence Breuillin; Jonathan Schramm; Mohammad Hajirezaei; Amir H. Ahkami; Patrick Favre; Uwe Druege; Bettina Hause; Marcel Bucher; Tobias Kretzschmar; Eligio Bossolini; Cris Kuhlemeier; Enrico Martinoia; Philipp Franken; Uwe Scholz; Didier Reinhardt

Most terrestrial plants form arbuscular mycorrhiza (AM), mutualistic associations with soil fungi of the order Glomeromycota. The obligate biotrophic fungi trade mineral nutrients, mainly phosphate (P(i) ), for carbohydrates from the plants. Under conditions of high exogenous phosphate supply, when the plant can meet its own P requirements without the fungus, AM are suppressed, an effect which could be interpreted as an active strategy of the plant to limit carbohydrate consumption of the fungus by inhibiting its proliferation in the roots. However, the mechanisms involved in fungal inhibition are poorly understood. Here, we employ a transcriptomic approach to get insight into potential shifts in metabolic activity and symbiotic signalling, and in the defence status of plants exposed to high P(i) levels. We show that in mycorrhizal roots of petunia, a similar set of symbiosis-related genes is expressed as in mycorrhizal roots of Medicago, Lotus and rice. P(i) acts systemically to repress symbiotic gene expression and AM colonization in the root. In established mycorrhizal roots, P(i) repressed symbiotic gene expression rapidly, whereas the inhibition of colonization followed with a lag of more than a week. Taken together, these results suggest that P(i) acts by repressing essential symbiotic genes, in particular genes encoding enzymes of carotenoid and strigolactone biosynthesis, and symbiosis-associated phosphate transporters. The role of these effects in the suppression of symbiosis under high P(i) conditions is discussed.


New Phytologist | 2009

Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism.

Amir H. Ahkami; Sandra Lischewski; Klaus‐T. Haensch; Svetlana Porfirova; Joerg Hofmann; Hardy Rolletschek; Michael Melzer; Philipp Franken; Bettina Hause; Uwe Druege; Mohammad Hajirezaei

Adventitious root formation (ARF) in the model plant Petunia hybrida cv. Mitchell has been analysed in terms of anatomy, gene expression, enzymatic activities and levels of metabolites. This study focuses on the involvement of wound response and primary metabolism. Microscopic techniques were complemented with targeted transcript, enzyme and metabolite profiling using real time polymerase chain reaction (PCR), Northern blot, enzymatic assays, chromatography and mass spectrometry. Three days after severance from the stock plants, first meristematic cells appeared which further developed into root primordia and finally adventitious roots. Excision of cuttings led to a fast and transient increase in the wound-hormone jasmonic acid, followed by the expression of jasmonate-regulated genes such as cell wall invertase. Analysis of soluble and insoluble carbohydrates showed a continuous accumulation during ARF. A broad metabolite profiling revealed a strong increase in organic acids and resynthesis of essential amino acids. Substantial changes in enzyme activities and metabolite levels indicate that specific enzymes and metabolites might play a crucial role during ARF. Three metabolic phases could be defined: (i) sink establishment phase characterized by apoplastic unloading of sucrose and being probably mediated by jasmonates; (ii) recovery phase; and (iii) maintenance phase, in which a symplastic unloading occurs.


Nature plants | 2016

Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida

Aureliano Bombarely; Michel Moser; Avichai Moshe Amrad; Manzhu Bao; Laure Bapaume; Cornelius S. Barry; Mattijs Bliek; Maaike R. Boersma; Lorenzo Borghi; Rémy Bruggmann; Marcel Bucher; Nunzio D'Agostino; Kevin M. Davies; Uwe Druege; Natalia Dudareva; Marcos Egea-Cortines; Massimo Delledonne; Noe Fernandez-Pozo; Philipp Franken; Laurie Grandont; J. S. Heslop-Harrison; Jennifer Hintzsche; Mitrick A. Johns; Ronald Koes; Xiaodan Lv; Eric Lyons; Diwa Malla; Enrico Martinoia; Neil S. Mattson; Patrice Morel

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.


Journal of Experimental Botany | 2015

Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

Amanda Rasmussen; Seyed A. Hosseini; Mohammed-Reza Hajirezaei; Uwe Druege; Danny Geelen

Summary Age-related adventitious rooting decline is linked to the switch from vegetative to floral meristem identity and may be linked to changes in auxin homeostasis reducing the available free IAA.


Frontiers in Plant Science | 2014

Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

Uwe Druege; Philipp Franken; Sandra Lischewski; Amir H. Ahkami; Siegfried Zerche; Bettina Hause; Mohammad Hajirezaei

Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.


Frontiers in Plant Science | 2016

Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

Uwe Druege; Philipp Franken; Mohammad Hajirezaei

Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.


PLOS ONE | 2014

Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

Amirhossein Ahkami; Uwe Scholz; Burkhard Steuernagel; Marc Strickert; Klaus-Thomas Haensch; Uwe Druege; Didier Reinhardt; Eva Nouri; Nicolaus von Wirén; Philipp Franken; Mohammad-Reza Hajirezaei

To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.


Plant Science | 2016

A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

Yvonne Klopotek; Philipp Franken; Hans-Peter Klaering; Kerstin Fischer; Bettina Hause; Mohammad-Reza Hajirezaei; Uwe Druege

The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation.


Frontiers in Plant Science | 2015

Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress

Martin Andreas Bauerfeind; Traud Winkelmann; Philipp Franken; Uwe Druege

Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar ‘SweetSunshine Williams’, the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars.


Journal of Experimental Botany | 2017

A specific role of iron in promoting meristematic cell division during adventitious root formation

Alexander Hilo; Fahimeh Shahinnia; Uwe Druege; Philipp Franken; Michael Melzer; Twan Rutten; Nicolaus von Wirén; Mohammad-Reza Hajirezaei

The essential role of iron in formation of adventitious roots is associated with an enhanced allocation of this element to actively dividing cells, highlighting a specific function in meristem development.

Collaboration


Dive into the Uwe Druege's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Kadner

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Lohr

Weihenstephan-Triesdorf University of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar

Elke Meinken

Weihenstephan-Triesdorf University of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge