Uwe Firzlaff
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uwe Firzlaff.
Hearing Research | 2003
Uwe Firzlaff; Gerd Schuller
The directional dependence of sound pressure transformation of head and pinna has been measured in the phyllostomid bat Phyllostomus discolor for the frontal hemisphere using a maximum length sequence method. The azimuthal position of the axis of highest pinna gain came closer to the midsagital plane with increasing frequency. The acoustic axis of highest pinna gain was further characterized by an increase of the elevation angle with increasing frequency and a specific decrease at 55 kHz. Additionally, a spectral notch separated two regions of high and low frequency hearing at specific elevation and frequency combinations. The special influence of the tragus on the position of the pinna gain axis and the spectral notches is demonstrated. The functional implications of the spectral notch for hearing in P. discolor are discussed.
PLOS ONE | 2010
Dieter Vanderelst; Fons De Mey; Herbert Peremans; Inga Geipel; Elisabeth K. V. Kalko; Uwe Firzlaff
Background Many bats vocalizing through their nose carry a prominent noseleaf that is involved in shaping the emission beam of these animals. To our knowledge, the exact role of these appendages has not been thoroughly investigated as for no single species both the hearing and the emission spatial sensitivities have been obtained. In this paper, we set out to evaluate the complete spatial sensitivity of two species of New World leaf-nosed bats: Micronycteris microtis and Phyllostomus discolor. From an ecological point of view, these species are interesting as they belong to the same family (Phyllostomidae) and their noseleaves are morphologically similar. They differ vastly in the niche they occupy. Comparing these species allows us to relate differences in function of the noseleaf to the ecological background of bat species. Methodology/Principal Findings We simulate the spatial sensitivity of both the hearing and the emission subsystems of two species, M. microtis and P. discolor. This technique allows us to evaluate the respective roles played by the noseleaf in the echolocation system of these species. We find that the noseleaf of M. microtis focuses the radiated energy better and yields better control over the emission beam. Conclusions From the evidence presented we conclude that the noseleaves serve quantitatively different functions for different bats. The main function of the noseleaf is to serve as an energy focusing mechanism that increases the difference between the reflected energy from objects in the focal area and objects in the periphery. However, despite the gross morphological similarities between the noseleaves of the two Phyllostomid species they focus the energy to a different extent, a capability that can be linked to the different ecological niches occupied by the two species.
Journal of the Acoustical Society of America | 2008
F. De Mey; Jonas Reijniers; Herbert Peremans; M. Otani; Uwe Firzlaff
UNLABELLED This paper presents a calculation of the head related transfer function (HRTF) for the frontal hemisphere of the phyllostomid bat Phyllostomus discolor using an acoustic field simulation tool based on the boundary element method. From the calculated HRTF results, binaural interaural intensity differences (IIDs) are derived. THE RESULTS Region of highest sensitivity, HRTF patterns, and IID patterns are shown to be in good agreement with earlier experimental measurements on other specimens of the same bat species, i.e., the differences are within the interspecies variability range. Next, it is argued that the proposed simulation method offers distinct advantages over acoustic measurements on real bat specimens. To illustrate this, it is shown how computer manipulation of the virtual morphology model allows a more detailed comprehension of bat spatial hearing by investigating the effects of different head parts on the HRTF. From this analysis it is concluded that for this species the pinna has a significantly larger effect on the HRTF and IID patterns than the head itself. This conclusion argues in favor of a series of recent simulation studies based on pinna morphology only [R. Muller, J. Acoust. Soc. Am. 116, 3701-3712 (2004); Muller et al., ibid 119, 4083-4092 (2006)].
The Journal of Neuroscience | 2006
Uwe Firzlaff; Sven Schörnich; Susanne Hoffmann; Gerd Schuller; Lutz Wiegrebe
Bats quickly navigate through a highly structured environment relying on echolocation. Large natural objects in the environment, like bushes or trees, produce complex stochastic echoes, which can be characterized by the echo roughness. Previous work has shown that bats can use echo roughness to classify the stochastic properties of natural objects. This study provides both psychophysical and electrophysiological data to identify a neural correlate of statistical echo analysis in the bat Phyllostomus discolor. Psychophysical results show that the bats require a fixed minimum roughness of 2.5 (in units of base 10 logarithm of the stimulus fourth moment) for roughness discrimination. Electrophysiological results reveal a subpopulation of 15 of 94 recorded cortical units, located in an anterior region of auditory cortex, whose rate responses changed significantly with echo roughness. It is shown that the behavioral ability to discriminate differences in the statistics of complex echoes can be quantitatively predicted by the neural responses of this subpopulation of auditory-cortical neurons.
PLOS Biology | 2007
Uwe Firzlaff; Maike Schuchmann; Jan E Grunwald; Gerd Schuller; Lutz Wiegrebe
Echolocating bats can identify three-dimensional objects exclusively through the analysis of acoustic echoes of their ultrasonic emissions. However, objects of the same structure can differ in size, and the auditory system must achieve a size-invariant, normalized object representation for reliable object recognition. This study describes both the behavioral classification and the cortical neural representation of echoes of complex virtual objects that vary in object size. In a phantom-target playback experiment, it is shown that the bat Phyllostomus discolor spontaneously classifies most scaled versions of objects according to trained standards. This psychophysical performance is reflected in the electrophysiological responses of a population of cortical units that showed an object-size invariant response (14/109 units, 13%). These units respond preferentially to echoes from objects in which echo duration (encoding object depth) and echo amplitude (encoding object surface area) co-varies in a meaningful manner. These results indicate that at the level of the bats auditory cortex, an object-oriented rather than a stimulus-parameter–oriented representation of echoes is achieved.
Hearing Research | 2004
Uwe Firzlaff; Gerd Schuller
The head-related transfer function (HRTF) has been measured in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi from 575 positions in the frontal hemisphere. P. parnellii showed an increase of the elevation angle of the axis of highest pinna gain with increasing frequency followed by a specific decrease at 75 kHz. Such a drop of elevation angle of the acoustic axis was not seen in R. rouxi. The HRTF further showed a spectral notch dependent on elevation and frequency in P. parnellii, but not in R. rouxi. The functional implications of this difference between both bat species are discussed. Frequencies at maximum pinna gain values did not clearly match the frequencies of the harmonics of the echolocation calls whereas spatial resolution of interaural intensity differences was best in a frequency range that included the higher harmonics of the echolocation calls in both bat species. However, specializations of HRTF patterns matching the exact frequencies of the harmonics of the echolocation calls could not be observed in both bat species.
The Journal of Neuroscience | 2011
Melina Heinrich; Alexander Warmbold; Susanne Hoffmann; Uwe Firzlaff; Lutz Wiegrebe
As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bats ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an objects width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity (“object width”) did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.
BMC Neuroscience | 2008
Susanne Hoffmann; Uwe Firzlaff; Susanne Radtke-Schuller; Britta Schwellnus; Gerd Schuller
BackgroundThe mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat Phyllostomus discolor (family: Phyllostomidae).ResultsThe auditory cortical area of P. discolor is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 μm and a medio-lateral distance of about 7000 μm on the flattened cortical surface.The auditory cortices of ten adult P. discolor were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons) to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions.Based on neurophysiological and neuroanatomical criteria, the auditory cortex of P. discolor could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only.ConclusionThe auditory cortex of P. discolor resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The tonotopically organized posterior ventral field might represent the primary auditory cortex and the tonotopically organized anterior ventral field seems to be similar to the anterior auditory field of other mammals. As most energy of the echolocation pulse of P. discolor is contained in the high-frequency range, the non-tonotopically organized high-frequency dorsal region seems to be particularly important for echolocation.
Journal of Neurophysiology | 2013
Susanne Hoffmann; Alexander Warmbold; Lutz Wiegrebe; Uwe Firzlaff
Navigating on the wing in complete darkness is a challenging task for echolocating bats. It requires the detailed analysis of spatial and temporal information gained through echolocation. Thus neural encoding of spatiotemporal echo information is a major function in the bat auditory system. In this study we presented echoes in virtual acoustic space and used a reverse-correlation technique to investigate the spatiotemporal response characteristics of units in the inferior colliculus (IC) and the auditory cortex (AC) of the bat Phyllostomus discolor. Spatiotemporal response maps (STRMs) of IC units revealed an organization of suppressive and excitatory regions that provided pronounced contrast enhancement along both the time and azimuth axes. Most IC units showed either spatially centralized short-latency excitation spatiotemporally imbedded in strong suppression, or the opposite, i.e., central short-latency suppression imbedded in excitation. This complementary arrangement of excitation and suppression was very rarely seen in AC units. In contrast, STRMs in the AC revealed much less suppression, sharper spatiotemporal tuning, and often a special spatiotemporal arrangement of two excitatory regions. Temporal separation of excitatory regions ranged up to 25 ms and was thus in the range of temporal delays occurring in target ranging in bats in a natural situation. Our data indicate that spatiotemporal processing of echo information in the bat auditory midbrain and cortex serves very different purposes: Whereas the spatiotemporal contrast enhancement provided by the IC contributes to echo-feature extraction, the AC reflects the result of this processing in terms of a high selectivity and task-oriented recombination of the extracted features.
European Journal of Neuroscience | 2001
Uwe Firzlaff; Gerd Schuller
Responses of neurons to apparent auditory motion in the azimuth were recorded in three different fields of auditory cortex of the rufous horseshoe bat. Motion was simulated using successive stimuli with dynamically changing interaural intensity differences presented via earphones. Seventy‐one percent of sampled neurons were motion‐direction‐sensitive. Two types of responses could be distinguished. Thirty‐four percent of neurons showed a directional preference exhibiting stronger responses to one direction of motion. Fifty‐seven percent of neurons responded with a shift of spatial receptive field position depending on direction of motion. Both effects could occur in the same neuron depending on the parameters of apparent motion. Most neurons with contralateral receptive fields exhibited directional preference only with motion entering the receptive field from the opposite direction. Receptive field shifts were opposite to the direction of motion. Specific combinations of spatiotemporal parameters determined the motion‐direction‐sensitive responses. Velocity was not encoded as a specific parameter. Temporal parameters of motion and azimuth position of the moving sound source were differentially encoded by neurons in different fields of auditory cortex. Neurons with a directional preference in the dorsal fields can encode motion with short interpulse intervals, whereas direction‐preferring neurons in the primary field can best encode motion with medium interpulse intervals. Furthermore, neurons with a directional preference in the dorsal fields are specialized for encoding motion in the midfield of azimuth, whereas direction‐preferring neurons in the primary field can encode motion in lateral positions. The results suggest that motion information is differentially processed in different fields of the auditory cortex of the rufous horseshoe bat.