Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uwe Handmann is active.

Publication


Featured researches published by Uwe Handmann.


Towards Service Robots for Everyday Environments | 2012

Face Detection and Person Identification on Mobile Platforms

Uwe Handmann; Sebastian Hommel; Michael Brauckmann; Michael Dose

The Desire project aimed at the development and implementation of a mobile service robotic research platform (technology platform) able to handle real world scenarios regarding service robotic tasks. Different modules for different tasks plus an interaction infrastructure were integrated on this platform. An example of a real world scenario task is the support of a handicapped person to clean up a kitchen in home environments.


international conference on intelligent transportation systems | 2014

A real-time applicable 3D gesture recognition system for automobile HMI

Thomas Kopinski; Stefan Geisler; Louis-Charles Caron; Alexander Gepperth; Uwe Handmann

We present a system for 3D hand gesture recognition based on low-cost time-of-flight(ToF) sensors intended for outdoor use in automotive human-machine interaction. As signal quality is impaired compared to Kinect-type sensors, we study several ways to improve performance when a large number of gesture classes is involved. Our system fuses data coming from two ToF sensors which is used to build up a large database and subsequently train a multilayer perceptron (MLP). We demonstrate that we are able to reliably classify a set of ten hand gestures in real-time and describe the setup of the system, the utilised methods as well as possible application scenarios.


international conference on artificial neural networks | 2014

Neural Network Based Data Fusion for Hand Pose Recognition with Multiple ToF Sensors

Thomas Kopinski; Alexander Gepperth; Stefan Geisler; Uwe Handmann

We present a study on 3D based hand pose recognition using a new generation of low-cost time-of-flight(ToF) sensors intended for outdoor use in automotive human-machine interaction. As signal quality is impaired compared to Kinect-type sensors, we study several ways to improve performance when a large number of gesture classes is involved. We investigate the performance of different 3D descriptors, as well as the fusion of two ToF sensor streams. By basing a data fusion strategy on the fact that multilayer perceptrons can produce normalized confidences individually for each class, and similarly by designing information-theoretic online measures for assessing confidences of decisions, we show that appropriately chosen fusion strategies can improve overall performance to a very satisfactory level. Real-time capability is retained as the used 3D descriptors, the fusion strategy as well as the online confidence measures are computationally efficient.


international symposium on computational intelligence and informatics | 2014

An efficient framework for distributed computing in heterogeneous Beowulf clusters and cluster-management

Darius Malysiak; Uwe Handmann

In the context of existing approaches to cluster computing we present a newly developed modular framework `SimpleHydra for rapid deployment and management of Beowulf clusters. Instead of focusing only the pure computation tasks on homogeneous clusters (i.e. clusters with identically set up nodes), this framework aims to ease the configuration of heterogeneous clusters and to provide a low-level / high-level object-oriented API for low-latency distributed computing. Our framework does not make any restrictions regarding the hardware and minimizes the use of external libraries to the case of special modules. In addition to that our framework enables the user to develop highly dynamic cluster topologies. We describe the frameworks general structure as well as time critical elements, give application examples in the `Big-Data context during a research project and briefly discuss additional features. Furthermore we give a thorough theoretical time/space complexity analysis of our implemented methods and general approaches.


Archive | 2013

Attention and Emotion Based Adaption of Dialog Systems

Sebastian Hommel; Ahmad Rabie; Uwe Handmann

In this work methods are described, which are used for an individual adaption of a dialog system. Anyway, an automatic real-time capable visual user attention estimation for a face to face human machine interaction is described. Furthermore, an emotion estimation is presented, which combines a visual and an acoustic method. Both, the attention estimation and the visual emotion estimation based on Active Appearance Models (AAMs). Certainly, for the attention estimation Multilayer Perceptrons (MLPs) are used to map the Active Appearance Parameters (AAM-Parameters) onto the current head pose. Afterwards, the chronology of the head poses is classified as attention or inattention. In the visual emotion estimation the AAM-Parameter will be classified by a Support-Vector-Machine (SVM). The acoustic emotion estimation also use a SVM to classifies emotion related audio signal features into the 5 basis emotions (neutral, happy, sad, anger, surprise). Afterward, a Bayes network is used to combine the results of the visual and the acoustic estimation in the decision level. The visual attention estimation as well as the emotion estimation will be used in service robotic to allow a more natural and human like dialog. Furthermore, the human head pose is very efficient interpreted as head nodding or shaking by the use of adaptive statistical moments. Especially, the head movement of many demented people are restricted, so they often only use their eyes to look around. For that reason, this work examine a simple gaze estimation with the help of an ordinary webcam. Moreover, a full body user re-identification method is described, which allows an individual state estimation of several people for hight dynamic situations. In this work an appearance based method is described, which allows a fast people re-identification over a short time span to allow the usage of individual parameter.


international conference on intelligent transportation systems | 2015

A Real-Time Applicable Dynamic Hand Gesture Recognition Framework

Thomas Kopinski; Alexander Gepperth; Uwe Handmann

We present a system for efficient dynamic hand gesture recognition based on a single time-of-flight sensor. As opposed to other approaches, we simply rely on depth data to interpret user movement with the hand in mid-air. We set up a large database to train multilayer perceptrons (MLPs) which are subsequently used for classification of static hand poses that define the targeted dynamic gestures. In order to remain robust against noise and to balance the low sensor resolution, PCA is used for data cropping and highly descriptive features, obtainable in real-time, are presented. Our simple yet efficient definition of a dynamic hand gesture shows how strong results are achievable in an automotive environment allowing for interesting and sophisticated applications to be realized.


international symposium on computational intelligence and informatics | 2014

Time-of-flight based multi-sensor fusion strategies for hand gesture recognition

Thomas Kopinski; Darius Malysiak; Alexander Gepperth; Uwe Handmann

Building upon prior results, we present an alternative approach to efficiently classifying a complex set of 3D hand poses obtained from modern Time-Of-Flight-Sensors (TOF). We demonstrate it is possible to achieve satisfactory results in spite of low resolution and high noise (inflicted by the sensors) and a demanding outdoor environment. We set up a large database of pointclouds in order to train multilayer perceptrons as well as support vector machines to classify the various hand poses. Our goal is to fuse data from multiple TOF sensors, which observe the poses from multiple angles. The presented contribution illustrates that real-time capability can be maintained with such a setup as the used 3D descriptors, the fusion strategy as well as the online confidence measures are computationally efficient.


asian conference on intelligent information and database systems | 2017

Boosting Detection Results of HOG-Based Algorithms Through Non-linear Metrics and ROI Fusion

Darius Malysiak; Anna-Katharina Römhild; Christoph Nieß; Uwe Handmann

Practical application of object detection systems, in research or industry, favors highly optimized black box solutions. We show how such a highly optimized system can be further augmented in terms of its reliability with only a minimal increase of computation times, i.e. preserving realtime boundaries. Our solution leaves the initial (HOG-based) detector unchanged and introduces novel concepts of non-linear metrics and fusion of ROIs. In this context we also introduce a novel way of combining feature vectors for mean-shift grouping. We evaluate our approach on a standarized image database with a HOG detector, which is representative for practical applications. Our results show that the amount of false-positive detections can be reduced by a factor of 4 with a negligable complexity increase. Although introduced and applied to a HOG-based system, our approach can easily be adapted for different detectors.


international conference on artificial neural networks | 2016

A Deep Learning Approach for Hand Posture Recognition from Depth Data

Thomas Kopinski; Fabian Sachara; Alexander Gepperth; Uwe Handmann

Given the success of convolutional neural networks (CNNs) during recent years in numerous object recognition tasks, it seems logical to further extend their applicability to the treatment of three-dimensional data such as point clouds provided by depth sensors. To this end, we present an approach exploiting the CNN’s ability of automated feature generation and combine it with a novel 3D feature computation technique, preserving local information contained in the data. Experiments are conducted on a large data set of 600.000 samples of hand postures obtained via ToF (time-of-flight) sensors from 20 different persons, after an extensive parameter search in order to optimize network structure. Generalization performance, measured by a leave-one-person-out scheme, exceeds that of any other method presented for this specific task, bringing the error for some persons down to 1.5 %.


2015 World Congress on Information Technology and Computer Applications (WCITCA) | 2015

Biometric for home environment challenges, modalities and applications

Ahmad Rabie; Uwe Handmann

Utilizing biometrie traits for privacy- and security-applications is receiving an increasing attention. Applications such as personal identification, access control, forensics appli-cations, e-banking, e-government, e-health and recently person-alized human-smart-home and human-robot interaction present some examples. In order to offer person-specific services for/of specific person a pre-identifying step should be done in the run-up. Using biometric in such application is encountered by diverse challenges. First, using one trait and excluding the others depends on the application aimed to. Some applications demand directly touch to biometric sensors, while others dont. Second challenge is the reliability of used biometric arrangement. Civilized application demands lower reliability comparing to the forensics ones. And third, for biometric system could only one trait be used (uni-modal systems) or multiple traits (Bi- or Multi-modal systems). The latter is applied, when systems with a relative high reliability are expected. The main aim of this paper is providing a comprehensive view about biometric and its application. The above mentioned challenges will be analyzed deeply. The suitability of each biometric sensor according to the aimed application will be deeply discussed. Detailed com-parison between uni-modal and Multi-modal biometric system will present which system where to be utilized. Privacy and security issues of biometric systems will be discussed too. Three scenarios of biometric application in home-environment, human-robot-interaction and e-health will be presented.

Collaboration


Dive into the Uwe Handmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabian Sachara

Université Paris-Saclay

View shared research outputs
Researchain Logo
Decentralizing Knowledge