Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uwe Horn is active.

Publication


Featured researches published by Uwe Horn.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Aβ protofibrils

Gernot Habicht; Christian Haupt; Ralf P. Friedrich; Peter Hortschansky; Carsten Sachse; Jessica Meinhardt; Karin Wieligmann; Gerald P. Gellermann; Michael Brodhun; Jürgen Götz; Karl-Jürgen Halbhuber; Christoph Röcken; Uwe Horn; Marcus Fändrich

The formation of amyloid fibrils is a common biochemical characteristic that occurs in Alzheimers disease and several other amyloidoses. The unifying structural feature of amyloid fibrils is their specific type of β-sheet conformation that differentiates these fibrils from the products of normal protein folding reactions. Here we describe the generation of an antibody domain, termed B10, that recognizes an amyloid-specific and conformationally defined epitope. This antibody domain was selected by phage-display from a recombinant library of camelid antibody domains. Surface plasmon resonance, immunoblots, and immunohistochemistry show that this antibody domain distinguishes Aβ amyloid fibrils from disaggregated Aβ peptide as well as from specific Aβ oligomers. The antibody domain possesses functional activity in preventing the formation of mature amyloid fibrils by stabilizing Aβ protofibrils. These data suggest possible applications of B10 in the detection of amyloid fibrils or in the modulation of their formation.


Applied Microbiology and Biotechnology | 1996

High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions

Uwe Horn; Wolfgang Strittmatter; Anke Krebber; Uwe Knüpfer; Marian Kujau; Rolf Wenderoth; Kristian M. Müller; Siegfried Matzku; Andreas Plückthun; Dieter Riesenberg

Abstract Functional bivalent miniantibodies, directed against the epidermal growth factor receptor, accumulated to more than 3 gl−1 in high-cell-density cultures of Escherichia coli RV308(pHKK) on a pilot scale. The miniantibodies consist of scFv fragments with a C-termi-nal hinge followed by a helix-turn-helix motif, which homodimerizes in vivo. The improved expression vector pHKK is characterized by the hok/sok suicide system, improving plasmid maintenance, and the inducible lac p/o promoter system with the very strong T7g10 Shine-Dalgarno sequence. The expression unit is flanked by terminators. The prototrophic RV308 cells were cultivated in glucose mineral salt medium and reached a cell density of 145 g dry biomass l−1 after 33 h. After induction, growth continued almost unchanged for a further 4 h with concomitant miniantibody formation. In the fed-batch phase, the concentration of glucose was kept almost constant at the physiological level of approximately 1.5 g l−1, using on-line flow injection analysis for control. Surprisingly, E. coli RV308(pHKK) did not accumulate significant amounts of the metabolic by-product acetate under these unlimited aerobic growth conditions.


Applied and Environmental Microbiology | 2010

Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster

Sebastian Bergmann; Alexander N. Funk; Kirstin Scherlach; Volker Schroeckh; Ekaterina Shelest; Uwe Horn; Christian Hertweck; Axel A. Brakhage

ABSTRACT Filamentous fungi produce numerous natural products that constitute a consistent source of potential drug leads, yet it seems that the majority of natural products are overlooked since most biosynthesis gene clusters are silent under standard cultivation conditions. Screening secondary metabolite genes of the model fungus Aspergillus nidulans, we noted a silent gene cluster on chromosome II comprising two nonribosomal peptide synthetase (NRPS) genes, inpA and inpB, flanked by a regulatory gene that we named scpR for secondary metabolism cross-pathway regulator. The induced expression of the scpR gene using the promoter of the alcohol dehydrogenase AlcA led to the transcriptional activation of both the endogenous scpR gene and the NRPS genes. Surprisingly, metabolic profiling of the supernatant of mycelia overexpressing scpR revealed the production of the polyketide asperfuranone. Through transcriptome analysis we found that another silent secondary metabolite gene cluster located on chromosome VIII coding for asperfuranone biosynthesis was specifically induced. Quantitative reverse transcription-PCR proved the transcription not only of the corresponding polyketide synthase (PKS) biosynthesis genes, afoE and afoG, but also of their activator, afoA, under alcAp-scpR-inducing conditions. To exclude the possibility that the product of the inp cluster induced the asperfuranone gene cluster, a strain carrying a deletion of the NRPS gene inpB and, in addition, the alcAp-scpR overexpression cassette was generated. In this strain, under inducing conditions, transcripts of the biosynthesis genes of both the NRPS-containing gene cluster inp and the asperfuranone gene cluster except gene inpB were detected. Moreover, the existence of the polyketide product asperfuranone indicates that the transcription factor ScpR controls the expression of the asperfuranone biosynthesis gene cluster. This expression as well as the biosynthesis of asperfuranone was abolished after the deletion of the asperfuranone activator gene afoA, indicating that ScpR binds to the afoA promoter. To the best of our knowledge, this is the first report of regulatory cross talk between two biosynthesis gene clusters located on different chromosomes.


Eukaryotic Cell | 2011

Proteolytic Cleavage of Covalently Linked Cell Wall Proteins by Candida albicans Sap9 and Sap10

Lydia Schild; Antje Heyken; Piet W. J. de Groot; Ekkehard Hiller; Marlen Mock; Chris G. de Koster; Uwe Horn; Steffen Rupp; Bernhard Hube

ABSTRACT The cell wall of the human-pathogenic fungus Candida albicans is a robust but also dynamic structure which mediates adaptation to changing environmental conditions during infection. Sap9 and Sap10 are cell surface-associated proteases which function in C. albicans cell wall integrity and interaction with human epithelial cells and neutrophils. In this study, we have analyzed the enzymatic properties of Sap9 and Sap10 and investigated whether these proteases cleave proteins on the fungal cell surface. We show that Sap9 and Sap10, in contrast to other aspartic proteases, exhibit a near-neutral pH optimum of proteolytic activity and prefer the processing of peptides containing basic or dibasic residues. However, both proteases also cleaved at nonbasic sites, and not all tested peptides with dibasic residues were processed. By digesting isolated cell walls with Sap9 or Sap10, we identified the covalently linked cell wall proteins (CWPs) Cht2, Ywp1, Als2, Rhd3, Rbt5, Ecm33, and Pga4 as in vitro protease substrates. Proteolytic cleavage of the chitinase Cht2 and the glucan-cross-linking protein Pir1 by Sap9 was verified using hemagglutinin (HA) epitope-tagged versions of both proteins. Deletion of the SAP9 and SAP10 genes resulted in a reduction of cell-associated chitinase activity similar to that upon deletion of CHT2, suggesting a direct influence of Sap9 and Sap10 on Cht2 function. In contrast, cell surface changes elicited by SAP9 and SAP10 deletion had no major impact on the phagocytosis and killing of C. albicans by human macrophages. We propose that Sap9 and Sap10 influence distinct cell wall functions by proteolytic cleavage of covalently linked cell wall proteins.


Microbial Cell Factories | 2010

Novel approach of high cell density recombinant bioprocess development: Optimisation and scale-up from microlitre to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures

Juozas Šiurkus; Johanna Panula-Perälä; Uwe Horn; Mario Kraft; Renata Rimšeliene; Peter Neubauer

BackgroundBioprocess development of recombinant proteins is time consuming and laborious as many factors influence the accumulation of the product in the soluble and active form. Currently, in most cases the developmental line is characterised by a screening stage which is performed under batch conditions followed by the development of the fed-batch process. Performing the screening already under fed-batch conditions would limit the amount of work and guarantee that the selected favoured conditions also work in the production scale.ResultsHere, for the first time, high throughput multifactorial screening of a cloning library is combined with the fed-batch technique in 96-well plates, and a strategy is directly derived for scaling to bioreactor scale. At the example of a difficult to express protein, an RNase inhibitor, it is demonstrated that screening of various vector constructs and growth conditions can be performed in a coherent line by (i) applying a vector library with promoters and ribosome binding sites of different strength and various fusion partners together with (ii) an early stage use of the fed-batch technology. It is shown that the EnBase® technology provides an easy solution for controlled cultivation conditions in the microwell scale. Additionally the high cell densities obtained provide material for various analyses from the small culture volumes. Crucial factors for a high yield of the target protein in the actual case were (i) the fusion partner, (ii) the use of of a mineral salt medium together with the fed-batch technique, and (iii) the preinduction growth rate. Finally, it is shown that the favorable conditions selected in the microwell plate and shake flask scales also work in the bioreactor.ConclusionsCultivation media and culture conditions have a major impact on the success of a screening procedure. Therefore the application of controlled cultivation conditions is pivotal. The consequent use of fed-batch conditons from the first screening phase not only shortens the developmental line by guarantying that the selected conditions are relevant for the scale up, but in our case also standard batch cultures failed to select the right clone or conditions at all.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Molecular basis of β-amyloid oligomer recognition with a conformational antibody fragment

Isabel Morgado; Karin Wieligmann; Magdalena Bereza; Raik Rönicke; Katrin Meinhardt; Karthikeyan Annamalai; Monika Baumann; Jessica Wacker; Peter Hortschansky; Miroslav Malesevic; Christoph Parthier; Christian Mawrin; Cordelia Schiene-Fischer; Klaus G. Reymann; Milton T. Stubbs; Jochen Balbach; Matthias Görlach; Uwe Horn; Marcus Fändrich

Oligomers are intermediates of the β-amyloid (Aβ) peptide fibrillogenic pathway and are putative pathogenic culprits in Alzheimer’s disease (AD). Here we report the biotechnological generation and biochemical characterization of an oligomer-specific antibody fragment, KW1. KW1 not only discriminates between oligomers and other Aβ conformations, such as fibrils or disaggregated peptide; it also differentiates between different types of Aβ oligomers, such as those formed by Aβ (1–40) and Aβ (1–42) peptide. This high selectivity of binding contrasts sharply with many other conformational antibodies that interact with a large number of structurally analogous but sequentially different antigens. X-ray crystallography, NMR spectroscopy, and peptide array measurements imply that KW1 recognizes oligomers through a hydrophobic and significantly aromatic surface motif that includes Aβ residues 18–20. KW1-positive oligomers occur in human AD brain samples and induce synaptic dysfunctions in living brain tissues. Bivalent KW1 potently neutralizes this effect and interferes with Aβ assembly. By altering a specific step of the fibrillogenic cascade, it prevents the formation of mature Aβ fibrils and induces the accumulation of nonfibrillar aggregates. Our data illuminate significant mechanistic differences in oligomeric and fibril recognition and suggest the considerable potential of KW1 in future studies to detect or inhibit specific types of Aβ conformers.


Journal of Molecular Biology | 2011

Pattern Recognition with a Fibril-Specific Antibody Fragment Reveals the Surface Variability of Natural Amyloid Fibrils

Christian Haupt; Magdalena Bereza; Senthil T. Kumar; Barbara Kieninger; Isabel Morgado; Peter Hortschansky; Günter Fritz; Christoph Röcken; Uwe Horn; Marcus Fändrich

Amyloid immunotherapy has led to the rise of antibodies, which target amyloid fibrils or structural precursors of fibrils, based on their specific conformational properties. Recently, we reported the biotechnological generation of the B10 antibody fragment, which provides conformation-specific binding to amyloid fibrils. B10 strongly interacts with fibrils from Alzheimers β amyloid (Aβ) peptide, while disaggregated Aβ peptide or Aβ oligomers are not explicitly recognized. B10 also enables poly-amyloid-specific binding and recognizes amyloid fibrils derived from different types of amyloidosis or different polypeptide chains. Based on our current data, however, we find that B10 does not recognize all tested amyloid fibrils and amyloid tissue deposits. It also does not specifically interact with intrinsically unfolded polypeptide chains or globular proteins even if the latter encompass high β-sheet content or β-solenoid domains. By contrast, B10 binds amyloid fibrils from d-amino acid or l-amino acid peptides and non-proteinaceous biopolymers with highly regular and anionic surface properties, such as heparin and DNA. These data establish that B10 binding does not depend on an amyloid-specific or protein-specific backbone structure. Instead, it involves the recognition of a highly regular and anionic surface pattern. This specificity mechanism is conserved in nature and occurs also within a group of natural amyloid receptors from the innate immune system, the pattern recognition receptors. Our data illuminate the structural diversity of naturally occurring amyloid scaffolds and enable the discrimination of distinct fibril populations in vitro and within diseased tissues.


Journal of Biotechnology | 2012

Differential expression of silent polyketide biosynthesis gene clusters in chemostat cultures of Aspergillus nidulans

Anindita Sarkar; Alexander N. Funk; Kirstin Scherlach; Fabian Horn; Volker Schroeckh; Pranatchareeya Chankhamjon; Martin Westermann; Martin Roth; Axel A. Brakhage; Christian Hertweck; Uwe Horn

The genome of the fungal model organism Aspergillus nidulans harbors nearly 30 polyketide synthase genes, yet the majority of these genes remain silent in the absence of particular stimuli. In this study, environmental conditions such as low specific microbial growth rate as well as nitrate, orthophosphate and glucose limitations were simulated under a continuous cultivation regime to induce the expression of silent polyketide synthase genes. In addition to offline and online bioprocess parameters, the physiological equilibrium was defined at the transcript level in terms of indicator gene expression. The different cultivation parameters resulted in a differential expression of two polyketide synthase genes coding for the biosynthesis of a variety of phenolic compounds, such as orsellinic acid, lecanoric acid, emodins, chrysophanol, shamixanthone, and sanghaspirodin. Further investigation of the metabolome revealed the formation of a novel prenylated benzophenone derivative designated as pre-shamixanthone. Our data indicate that employing chemostat fermentations in combination with genome mining, transcriptome analysis and metabolic profiling represents a valuable approach for triggering cryptic biosynthetic pathways.


Journal of Molecular Biology | 2011

Amyloid Fibril Recognition with the Conformational B10 Antibody Fragment Depends on Electrostatic Interactions.

Christian Haupt; Isabel Morgado; Senthil T. Kumar; Christoph Parthier; Magdalena Bereza; Peter Hortschansky; Milton T. Stubbs; Uwe Horn; Marcus Fändrich

Amyloid fibrils are naturally occurring polypeptide scaffolds with considerable importance for human health and disease. These supermolecular assemblies are β-sheet rich and characterized by a high structural order. Clinical diagnosis and emerging therapeutic strategies of amyloid-dependent diseases, such as Alzheimers, rely on the specific recognition of amyloid structures by other molecules. Recently, we generated the B10 antibody fragment, which selectively binds to Alzheimers Aβ(1-40) amyloid fibrils but does not explicitly recognize other protein conformers, such as oligomers and disaggregated Aβ peptide. B10 presents poly-amyloid specific binding and interacts with fibrillar structures consisting of different polypeptide chains. To determine the molecular basis behind its specificity, we have analyzed the molecular properties of B10 with a battery of biochemical and biophysical techniques, ranging from X-ray crystallography to chemical modification studies. We find that fibril recognition depends on positively charged residues within the B10 antigen binding site. Mutation of these basic residues into alanine potently impairs fibril binding, and reduced B10-fibril interactions are also observed when the fibril carboxyl groups are covalently masked by a chemical modification approach. These data imply that the B10 conformational specificity for amyloid fibrils depends upon specific electrostatic interactions with an acidic moiety, which is common to different amyloid fibrils.


Biochemical and Biophysical Research Communications | 2011

Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer’s Aβ peptide

Megan Garvey; Katharina Tepper; Caroline Haupt; Uwe Knüpfer; Karolin Klement; Jessica Meinhardt; Uwe Horn; Jochen Balbach; Marcus Fändrich

The oligomerization of Aβ peptide into amyloid fibrils is a hallmark of Alzheimers disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of Aβ and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects on the fibrillation and oligomerization mechanism of Aβ peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of Aβ fibrillation. The three histidine residues at positions 6, 13 and 14 of Aβ(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.

Collaboration


Dive into the Uwe Horn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge