Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uwe John is active.

Publication


Featured researches published by Uwe John.


Science | 2009

Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas.

Alexandra Z. Worden; Jae-Hyeok Lee; Thomas Mock; Pierre Rouzé; Melinda P. Simmons; Andrea Aerts; Andrew E. Allen; Marie L. Cuvelier; Evelyne Derelle; Meredith V. Everett; Elodie Foulon; Jane Grimwood; Heidrun Gundlach; Bernard Henrissat; Carolyn A. Napoli; Sarah M. McDonald; Micaela S. Parker; Stephane Rombauts; Aasf Salamov; Peter von Dassow; Jonathan H. Badger; Pedro M. Coutinho; Elif Demir; Inna Dubchak; Chelle Gentemann; Wenche Eikrem; Jill E. Gready; Uwe John; William Lanier; Erika Lindquist

Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.


PLOS Biology | 2014

The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing.

Patrick J. Keeling; Fabien Burki; Heather M. Wilcox; Bassem Allam; Eric E. Allen; Linda A. Amaral-Zettler; E. Virginia Armbrust; John M. Archibald; Arvind K. Bharti; Callum J. Bell; Bank Beszteri; Kay D. Bidle; Lisa Campbell; David A. Caron; Rose Ann Cattolico; Jackie L. Collier; Kathryn J. Coyne; Simon K. Davy; Phillipe Deschamps; Sonya T. Dyhrman; Bente Edvardsen; Ruth D. Gates; Christopher J. Gobler; Spencer J. Greenwood; Stephanie M. Guida; Jennifer L. Jacobi; Kjetill S. Jakobsen; Erick R. James; Bethany D. Jenkins; Uwe John

Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the worlds oceans.


Nature | 2013

Pan genome of the phytoplankton Emiliania underpins its global distribution

Betsy A. Read; Jessica Kegel; Mary J. Klute; Alan Kuo; Stephane C. Lefebvre; Florian Maumus; Christoph Mayer; John P. Miller; Adam Monier; Asaf Salamov; Jeremy R. Young; Maria Aguilar; Jean-Michel Claverie; Stephan Frickenhaus; Karina Gonzalez; Emily K. Herman; Yao-Cheng Lin; Johnathan A. Napier; Hiroyuki Ogata; Analissa F Sarno; Jeremy Shmutz; Declan C. Schroeder; Frederic Verret; Peter von Dassow; Klaus Valentin; Yves Van de Peer; Glen L. Wheeler; Emiliana Huxleyi; Joel B. Dacks; Charles F. Delwiche

Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.


European Journal of Phycology | 2009

Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins.

Urban Tillmann; Malte Elbrächter; Bernd Krock; Uwe John; Allan Cembella

Azaspiracids (AZAs) are a group of lipophilic marine biotoxins associated with human incidents of shellfish poisoning. During a research cruise to the North Sea, we analysed size-fractionated plankton for AZA by mass spectrometry and successfully isolated an AZA-producing dinoflagellate from the east coast of Scotland. As shown previously, an axenic culture of this dinoflagellate produces AZA 1, AZA 2 and an isomer of AZA 2. Here we give a taxonomic description of this new taxon Azadinium spinosum gen. et sp. nov., as a de novo producer of AZAs. Azadinium spinosum is a small (12–16 µm length and 7–11 µm width) peridinin-containing photosynthetic dinoflagellate with a superficial resemblance under light microscopy to gymnodinioids, but with a thin theca. The large nucleus is spherical and located posteriorly, whereas the single chloroplast is parietal, lobed, and typically extends into both the epi- and hyposome. The Kofoidian thecal tabulation is APC, 4′, 3a, 6″, 6C, 5?S, 6′″, 2″″. This plate pattern has an epithecal affinity to the Peridiniales and a hypothecal affinity to the Gonyaulacales, but is distinctly different from described dinoflagellate genera. The assignment of A. spinosum to the dinoflagellates is supported by molecular phylogenetic analysis of four genes, SSU rDNA, LSU rDNA (D1/D2 region), ITS and cytochrome oxidase (sub-unit 1) (COI). In agreement with the morphological description, phylogenetic analysis did not show any particularly close affiliation to the Peridiniales or Gonyaulacales, nor to any other dinoflagellate order represented in molecular databases. Consequently, we erected a new genus, Azadinium, for this taxon. However the ordinal affiliation of the genus is uncertain. This study represents the first description and confirmation of a new dinoflagellate species capable of producing AZA and is thus an important advance in surveillance programmes for toxigenic microalgae and toxins of human health significance.


Nature Biotechnology | 2013

Updating benchtop sequencing performance comparison

Sebastian Jünemann; Fritz J. Sedlazeck; Karola Prior; Andreas Albersmeier; Uwe John; Jörn Kalinowski; Alexander Mellmann; Alexander Goesmann; Arndt von Haeseler; Jens Stoye; Dag Harmsen

In April 2012, your journal published a study by Loman et al.1 that systematically compared desktop next-generation sequencers (NGS) from three instrument providers. Using the custom scripts supplied by the authors, the same software and the same draft genome (with 153 remaining gaps within several scaffolds) as the reference, we reproduced their results with their data of the enterohemorrhagic Escherichia coli (EHEC) strain found in the 2011 outbreak in Germany. However, we wish to bring readers’ attention to some shortcomings in the report from Loman et al.1, focusing particularly on its discussion of read-level error analysis. NGS is a rapidly changing market, which clearly complicates the comparisons such as that made by Loman et al. Since the original study1, Illumina (San Diego) has launched the MiSeq sequencer officially and has released Nextera library construction kits and 2 × 250–base-pair (250-bp) paired-end (PE) sequencing chemistry. Furthermore, Life Technologies (Carlsbad, California), has made 200-bp and 300-bp kits available for the Ion Torrent Personal Genome Machine (PGM). Roche (Basel, Switzerland) has updated the Sequencing System software for its 454 GS Junior (GSJ) from version 2.6 to 2.7. In this report, we provide an up-to-date snapshot of how benchtop platforms have evolved since the previous study1.


PLOS ONE | 2010

The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications.

Karina Stucken; Uwe John; Allan Cembella; Alejandro A. Murillo; Katia Soto-Liebe; Juan J. Fuentes-Valdés; Maik Friedel; Alvaro M. Plominsky; Mónica Vásquez; Gernot Glöckner

Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N(2)) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N(2) fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N(2) fixation capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch revealed a common minimal gene set for each of these cyanobacterial traits.


European Journal of Phycology | 2003

Discrimination of the toxigenic dinoflagellates Alexandrium tamarense and A. ostenfeldii in co-occurring natural populations from Scottish coastal waters

Uwe John; Allan Cembella; C. Hummert; Malte Elbrächter; R. Groben; Linda K. Medlin

Blooms of the toxic dinoflagellate Alexandrium tamarense (Lebour) Balech, a known producer of potent neurotoxins associated with paralytic shellfish poisoning (PSP), are common annual events along the Scottish east coast. The cooccurrence of a second Alexandrium species, A. ostenfeldii (Paulsen) Balech & Tangen is reported in this study from waters of the Scottish east coast. The latter species has been suspected to be an alternative source of PSP toxins in northern Europe. Recent identification of toxic macrocyclic imines known as spirolides in A. ostenfeldii indicates a potential new challenge for monitoring toxic Alexandrium species and their respective toxins in natural populations. In mixed Phytoplankton assemblages, Alexandrium species are difficult to discriminate accurately by conventional light microscopy. Species-specific rRNA probes based upon 18S and 28S ribosomal DNA sequences were developed for A. ostenfeldii and tested by dot-blot and fluorescence in situ hybridization (FISH) techniques. Hybridization patterns of A. ostenfeldii probes for cultured Alexandrium isolates, and cells from field populations from the Scottish east coast, were compared with those of rDNA probes for A. tamarense and a universal dinoflagellate probe. Alexandrium cell numbers in field samples determined by whole-cell in situ hybridization were much lower than those determined by optical microscopy with the Utermöhi method involving sedimentation chambers, but the results were highly correlated (e.g. r 2 = 0.94; n = 6 for A. tamarense). Determination of spirolides and PSP toxins by instrumental analysis on board ship demonstrated the presence of both toxin groups in plankton assemblages collected from surface waters near the Orkney Islands, and confirmed the association of A. ostenfeldii with spirolides in northern Europe. These results show that rRNA probes for A. tamarense and A. ostenfeldii are useful, albeit only semi-quantitative, tools to detect and discriminate these species in field studies.


Genome Research | 2011

Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication

Andrew J. Heidel; Hajara M. Lawal; Marius Felder; Christina Schilde; Nicholas R. Helps; Budi Tunggal; Francisco Rivero; Uwe John; Michael Schleicher; Ludwig Eichinger; Matthias Platzer; Angelika A. Noegel; Pauline Schaap; Gernot Glöckner

Dictyostelium discoideum (DD), an extensively studied model organism for cell and developmental biology, belongs to the most derived group 4 of social amoebas, a clade of altruistic multicellular organisms. To understand genome evolution over long time periods and the genetic basis of social evolution, we sequenced the genomes of Dictyostelium fasciculatum (DF) and Polysphondylium pallidum (PP), which represent the early diverging groups 1 and 2, respectively. In contrast to DD, PP and DF have conventional telomere organization and strongly reduced numbers of transposable elements. The number of protein-coding genes is similar between species, but only half of them comprise an identifiable set of orthologous genes. In general, genes involved in primary metabolism, cytoskeletal functions and signal transduction are conserved, while genes involved in secondary metabolism, export, and signal perception underwent large differential gene family expansions. This most likely signifies involvement of the conserved set in core cell and developmental mechanisms, and of the diverged set in niche- and species-specific adaptations for defense and food, mate, and kin selection. Phylogenetic dating using a concatenated data set and extensive loss of synteny indicate that DF, PP, and DD split from their last common ancestor at least 0.6 billion years ago.


Journal of Phycology | 2010

PHENOTYPIC VARIATION AND GENOTYPIC DIVERSITY IN A PLANKTONIC POPULATION OF THE TOXIGENIC MARINE DINOFLAGELLATE ALEXANDRIUM TAMARENSE (DINOPHYCEAE)1

Tilman Alpermann; Urban Tillmann; Bank Beszteri; Allan Cembella; Uwe John

Multiple clonal isolates from a geographic population of Alexandrium tamarense (M. Lebour) Balech from the North Sea exhibited high genotypic and phenotypic variation. Genetic heterogeneity was such that no clonal lineage was repeatedly sampled according to genotypic markers specified by amplified fragment length polymorphism (AFLP) and microsatellites. Subsampling of genotypic data from both markers showed that ordination of individuals by pair‐wise genetic dissimilarity indices was more reliable by AFLP (482 biallelic loci) than by microsatellites (18 loci). However, resulting patterns of pair‐wise genetic similarities from both markers were significantly correlated (Mantel test P < 0.005). The composition of neurotoxins associated with paralytic shellfish poisoning (PSP) was also highly diverse among these isolates and allowed clustering of toxin phenotypes based on prevalence of individual toxins. Correlation analysis of pair‐wise relatedness of individual clones according to PSP‐toxin profiles and both genotypic characters failed to yield close associations. The expression of allelochemical properties against the cryptophyte Rhodomonas salina (Wisłouch) D. R. A. Hill et Wetherbee and the predatory dinoflagellate Oxyrrhis marina Dujard. manifested population‐wide variation of responses in the target species, from no visible effect to complete lysis of target cells. Whereas the high genotypic variation indicates high potential for adaptability of the population, we interpret the wide phenotypic variation as evidence for lack of strong selective pressure on respective phenotypic traits at the time the population was sampled. Population markers as applied here may elucidate the ecological significance of respective traits when followed under variable environmental conditions, thereby revealing how variation is maintained within populations.


Molecular Ecology | 2009

Implications of life‐history transitions on the population genetic structure of the toxigenic marine dinoflagellate Alexandrium tamarense

Tilman Alpermann; Bank Beszteri; Uwe John; Urban Tillmann; Allan Cembella

Genotypic or phenotypic markers for characterization of natural populations of marine microalgae have typically addressed questions regarding differentiation among populations, usually with reference to a single or few clonal isolates. Based upon a large number of contemporaneous isolates from the same geographical population of the toxigenic species Alexandrium tamarense from the North Sea, we uncovered significant genetic substructure and low but significant multilocus linkage disequilibrium (LD) within the planktonic population. Between the alternative molecular genotyping approaches, only amplified fragment length polymorphism (AFLP) revealed cryptic genetic population substructure by Bayesian clustering, whereas microsatellite markers failed to yield concordant patterns. Both markers, however, gave evidence for genetic differentiation of population subgroups as defined by AFLP. A considerable portion of multilocus LD could be attributed to population subdivision. The remaining LD within population subgroups is interpreted as an indicator of frequency shifts of clonal lineages during vegetative growth of planktonic populations. Phenotypic characters such as cellular content and composition of neurotoxins associated with paralytic shellfish poisoning (PSP) and allelochemical properties may contribute to intra‐ or inter‐annual differentiation of planktonic populations, if clonal lineages that express these characters are selectively favoured. Nevertheless, significant phenotypic differentiation for these characters among the genetically differentiated subgroups was only detected for PSP toxin content in two of the four population subgroups. By integrating the analysis of phenotypic and genotypic characteristics, we developed a conceptual population genetic model to explain the importance of life‐cycle dynamics and transitions in the evolutionary ecology of these dinoflagellates.

Collaboration


Dive into the Uwe John's collaboration.

Top Co-Authors

Avatar

Allan Cembella

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Urban Tillmann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Linda Medlin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bernd Krock

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Sylke Wohlrab

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Allan Cembella

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Tilman Alpermann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus-Ulrich Valentin

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge