Uwe Kirchhefer
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uwe Kirchhefer.
Cardiovascular Research | 1999
Uwe Kirchhefer; Wilhelm Schmitz; Hasso Scholz; Joachim Neumann
OBJECTIVES A hallmark of human heart failure is prolonged myocardial relaxation. Although the intrinsic mechanism of phospholamban coupling to the Ca(2+)-ATPase is unaltered in normal and failed human hearts, it remains possible that regulation of phospholamban phosphorylation by cAMP-dependent mechanisms or other second messenger pathways could be perturbed, which may account partially for the observed dysfunctions of the sarcoplasmic reticulum (SR) associated with this disease. METHODS cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaM kinase) were characterized initially by DEAE-Sepharose chromatography in hearts from patients with end-stage dilated cardiomyopathy. We measured the activity of PKA and CaM kinase in left ventricular tissue of failing (idiopathic dilated cardiomyopathy; ischemic heart disease) and nonfailing human hearts. RESULTS Basal PKA activity was not changed between failing and nonfailing hearts. One major peak of CaM kinase activity was detected by DEAE-Sepharose chromatography. CaM kinase activity was increased almost 3-fold in idiopathic dilated cardiomyopathy. In addition, hemodynamical data (left ventricular ejection fraction, cardiac index) from patients suffering from IDC positively correlate with CaM kinase activity. CONCLUSIONS Increased CaM kinase activity in hearts from patients with dilated cardiomyopathy could play a role in the abnormal Ca2+ handling of the SR and heart muscle cell.
Human Mutation | 2012
Birgit Stallmeyer; Sven Zumhagen; Isabelle Denjoy; Guillaume Duthoit; Jean-Louis Hébert; Xavier Ferrer; Svetlana Maugenre; Wilhelm Schmitz; Uwe Kirchhefer; Ellen Schulze-Bahr; Pascale Guicheney; Eric Schulze-Bahr
Very recently, mutations in the TRPM4 gene have been identified in four pedigrees as the cause of an autosomal dominant form of cardiac conduction disease. To determine the role of TRPM4 gene variations, the relative frequency of TRPM4 mutations and associated phenotypes was assessed in a cohort of 160 unrelated patients with various types of inherited cardiac arrhythmic syndro‐mes. In eight probands with atrioventricular block or right bundle branch block—five familial cases and three spora‐dic cases—a total of six novel and two published TRPM4 mutations were identified. In patients with sinus node dysfunction, Brugada syndrome, or long‐QT syndrome, no mutations were found. The novel mutations include six amino acid substitutions and appeared randomly distributed through predicted TRPM4 protein. In addition, eight polymorphic sites including two in‐frame deletions were found. Mutations separated from polymorphisms by absence in control individuals and familial cosegregation in some families. In summary, TRPM4 gene mutations appear to play a major role in cardiac conduction disease but not for other related syndromes so far. The phenotypes are variable and clearly suggestive of additional factors modulating the disease phenotype in some patients. Hum Mutat 33:109–117, 2012.
Journal of Biological Chemistry | 2005
Frank U. Müller; Geertje Lewin; Hideo A. Baba; Peter Boknik; Larissa Fabritz; Uwe Kirchhefer; Paulus Kirchhof; Karin Loser; Marek Matus; Joachim Neumann; Burkhard Riemann; Wilhelm Schmitz
The transcriptional activation mediated by cAMP-response element (CRE) and transcription factors of the CRE-binding protein (CREB)/CRE modulator (CREM) family represents an important mechanism of cAMP-dependent gene regulation possibly implicated in detrimental effects of chronic β-adrenergic stimulation in end-stage heart failure. We studied the cardiac role of CREM in transgenic mice with heart-directed expression of CREM-IbΔC-X, a human cardiac CREM isoform. Transgenic mice displayed atrial enlargement with atrial and ventricular hypertrophy, developed atrial fibrillation, and died prematurely. In vivo hemodynamic assessment revealed increased contractility of transgenic left ventricles probably due to a selective up-regulation of SERCA2, the cardiac Ca2+-ATPase of the sarcoplasmic reticulum. In transgenic ventricles, reduced phosphorylation of phospholamban and of the CREB was associated with increased activity of serine-threonine protein phosphatase 1. The density of β1-adrenoreceptor was increased, and messenger RNAs encoding transcription factor dHAND and small G-protein RhoB were decreased in transgenic hearts as compared with wild-type controls. Our results indicate that heart-directed expression of CREM-IbΔC-X leads to complex cardiac alterations, suggesting CREM as a central regulator of cardiac morphology, function, and gene expression.
Cardiovascular Research | 2003
Uwe Kirchhefer; Joachim Neumann; Donald M. Bers; Igor B. Buchwalow; Larissa Fabritz; Gabriela Hanske; Isabel Justus; Burkhard Riemann; Wilhelm Schmitz; Larry R. Jones
OBJECTIVE Junctin is a major transmembrane protein in cardiac junctional sarcoplasmic reticulum, which forms a quaternary complex with the ryanodine receptor (Ca(2+) release channel), triadin, and calsequestrin. METHODS To better understand the role of junctin in excitation-contraction coupling in the heart, we generated transgenic mice with targeted overexpression of junctin to mouse heart, using the alpha-MHC promoter to drive protein expression. RESULTS The protein was overexpressed 10-fold in mouse ventricles and overexpression was accompanied by cardiac hypertrophy (19%). The levels of two other junctional SR-proteins, the ryanodine receptor and triadin, were reduced by 32% and 23%, respectively. However, [3H]ryanodine binding and the expression levels of calsequestrin, phospholamban and SERCA2a remained unchanged. Cardiomyocytes from junctin-overexpressing mice exhibited impaired relaxation: Ca(2+) transients decayed at a slower rate and cell relengthening was prolonged. Isolated electrically stimulated papillary muscles from junctin-overexpressing hearts exhibited prolonged mechanical relaxation, and echocardiographic parameters of relaxation were prolonged in the living transgenic mice. The amplitude of caffeine-induced Ca(2+) transients was lower in cardiomyocytes from junctin-overexpressing mice. The inactivation kinetics of L-type Ca(2+) channel were prolonged in junctin-overexpressing cardiomyocytes using Ca(2+) or Ba(2+) as charge carriers. CONCLUSION Our data provide evidence that cardiac-specific overexpression of junctin is accompanied by impaired myocardial relaxation with prolonged Ca(2+) transient kinetics on the cardiomyocyte level.
Cardiovascular Research | 1999
Peter Boknik; Claus Unkel; Uwe Kirchhefer; Ulrich Kleideiter; Oliver Klein-Wiele; Jörg Knapp; Bettina Linck; Hartmut Lüss; Frank U. Müller; Wilhelm Schmitz; Ute Vahlensieck; Norbert Zimmermann; Larry R. Jones; Joachim Neumann
BACKGROUND Several independent lines of evidence indicate that phospholamban (PLB) expression correlates positively with depression of force of contraction and duration of contraction in isolated cardiac preparations of several animal species. Here, we studied whether PLB levels correlate with attenuation of contractility and enhancement of contractile time parameters in different parts of the human heart. METHODS Force of contraction was measured in isolated electrically driven atrial and ventricular preparations from human hearts. Ca(2+)-uptake by human atrial and ventricular homogenates was assayed at different ionized Ca(2+)-concentrations. Protein expression of PLB and the sarcoplasmic Ca(2+)-ATPase (SERCA) was measured in homogenates by quantitative immunoblotting using specific antibodies. PLB mRNA expression was quantified in human cardiac preparations by Northern blot analysis. RESULTS The duration of contraction in isolated preparations of human right ventricle (RV) was double that found in right atrial preparations (RA) (620 +/- 25 ms versus 308 +/- 15 ms). In RA, PLB expression was reduced by 44% at the protein level and by 34% at the mRNA level compared to RV. In contrast, the SERCA protein content was increased by 104% in RA compared to RV. Ca(2+)-uptake at low ionized Ca(2+)-concentration, where the inhibiting effect of PLB is maximal, amounted to 1.39 +/- 0.28 nmol Ca2+/mg protein in RA and to 0.62 +/- 0.09 nmol Ca2+/mg protein in RV (n = 6 both). CONCLUSIONS It is suggested that duration of contraction is shorter in human atrium versus ventricle due to the combined effect of decreased PLB levels (which inhibits SERCA function) and increased SERCA levels. The lower relative ratio of PLB to SERCA leads to less inhibition of SERCA and increased Ca(2+)-uptake which enhances relaxation and contraction in human atrium.
Cardiovascular Research | 2001
Peter Boknik; Ingrid Heinroth-Hoffmann; Uwe Kirchhefer; Jörg Knapp; Bettina Linck; Hartmut Lüss; Thorsten Müller; Wilhelm Schmitz; Otto-Erich Brodde; Joachim Neumann
OBJECTIVE Chronic pressure overload in spontaneously hypertensive rats (SHR) is accompanied by heart hypertrophy and signs of heart failure. Since there is growing evidence for a possible pathophysiological role of altered protein phosphorylation in heart hypertrophy and failure, we studied here cardiac regulatory phosphoproteins and the kinases and phosphatases which regulate their phosphorylation state. METHODS The experiments were performed in ventricles of SHR (12-13 weeks old) and age-matched normotensive Wistar-Kyoto rats (WKY). RESULTS Basal as well as isoproterenol (Iso)-stimulated force of contraction (FOC) was markedly decreased in isolated electrically driven papillary muscles of SHR. Iso (3 micromol/l, 10 min) increased FOC by 0.91+/-0.20 mN in SHR and by 3.88+/-0.52 mN in WKY, respectively. Ca(2+)-uptake by sarcoplasmic reticulum (SR) at low ionized Ca(2+)-concentration was increased in homogenates from SHR. This was not due to altered expression of phospholamban (PLB), SR-Ca(2+)-ATPase and calsequestrin. However, PLB-phosphorylation at threonine-17 (PLB-PT-17) and the activity of Ca(2+)/calmodulin dependent protein kinase (Ca(2+)/Cam-PK) was increased in SHR. In addition, we found an enhanced protein kinase A (PKA)-dependent phosphorylation of the inhibitory subunit of troponin (TnI). In contrast, there was no difference in the activity or expression (protein- and mRNA-level) of protein phosphatases type 1 or type 2A between SHR and WKY. CONCLUSIONS It is suggested that increased Ca(2+)/Cam-PK-activity with resulting increase of PLB-PT-17 enhanced SR-Ca(2+)-uptake in SHR and might contribute to the pathophysiological changes in cardiac hypertrophy of SHR.
American Journal of Physiology-heart and Circulatory Physiology | 1998
Iva Gombosová; Peter Boknik; Uwe Kirchhefer; Jörg Knapp; Hartmut Lüss; Frank U. Müller; Thorsten Müller; Ute Vahlensieck; Wilhelm Schmitz; Geza S. Bodor; Joachim Neumann
Compared with isolated electrically driven neonatal ventricular preparations, the total time of contraction, the time to peak tension, and the time of relaxation were decreased to ∼50% in adult ventricular preparations. The expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) was increased to 133% at the protein level and to 154% at the mRNA level in adult vs. neonatal ventricular preparations, whereas phospholamban was unchanged at both the protein and mRNA levels. Moreover, Ca2+ uptake was increased to 180% in adult vs. neonatal ventricular preparations. Phospholamban phosphorylation was enhanced in adult vs. neonatal ventricular preparations. In adult ventricular preparations, phosphatase activity was reduced to 53% of neonatal preparations, the protein levels of the immunologically detectable catalytic subunits of protein phosphatase types 1 and 2A were reduced to 28 and 61% of neonatal preparations, respectively, and the mRNA levels of type 1α, 1β, 1γ, 2Aα, and 2Aβ phosphatase isoforms were decreased to 69, 68, 54, 67, and 63%, respectively. We conclude that in the adult rat heart, the shortened time parameters of contraction can be explained by an elevated expression of SERCA. In addition, an increased phosphorylation state of phospholamban due to reduced phosphatase activity may be involved.Compared with isolated electrically driven neonatal ventricular preparations, the total time of contraction, the time to peak tension, and the time of relaxation were decreased to approximately 50% in adult ventricular preparations. The expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) was increased to 133% at the protein level and to 154% at the mRNA level in adult vs. neonatal ventricular preparations, whereas phospholamban was unchanged at both the protein and mRNA levels. Moreover, Ca2+ uptake was increased to 180% in adult vs. neonatal ventricular preparations. Phospholamban phosphorylation was enhanced in adult vs. neonatal ventricular preparations. In adult ventricular preparations, phosphatase activity was reduced to 53% of neonatal preparations, the protein levels of the immunologically detectable catalytic subunits of protein phosphatase types 1 and 2A were reduced to 28 and 61% of neonatal preparations, respectively, and the mRNA levels of type 1alpha, 1beta, 1gamma, 2Aalpha, and 2Abeta phosphatase isoforms were decreased to 69, 68, 54, 67, and 63%, respectively. We conclude that in the adult rat heart, the shortened time parameters of contraction can be explained by an elevated expression of SERCA. In addition, an increased phosphorylation state of phospholamban due to reduced phosphatase activity may be involved.
Cardiovascular Research | 2010
Larissa Fabritz; Dierk Damke; Markus Emmerich; Susann G. Kaufmann; Kathrin Theis; Andreas Blana; Lisa Fortmüller; Sandra Laakmann; Sven Hermann; Elena Aleynichenko; Johannes Steinfurt; Daniela Volkery; Burkhard Riemann; Uwe Kirchhefer; Michael R. Franz; Günter Breithardt; Edward Carmeliet; Michael Schäfers; Sebastian K.G. Maier; Peter Carmeliet; Paulus Kirchhof
Aims Clinical observations in patients with long QT syndrome carrying sodium channel mutations (LQT3) suggest that bradycardia caused by parasympathetic stimulation may provoke torsades de pointes (TdP). β-Adrenoceptor blockers appear less effective in LQT3 than in other forms of the disease. Methods and results We studied effects of autonomic modulation on arrhythmias in vivo and in vitro and quantified sympathetic innervation by autoradiography in heterozygous mice with a knock-in deletion (ΔKPQ) in the Scn5a gene coding for the cardiac sodium channel and increased late sodium current (LQT3 mice). Cholinergic stimulation by carbachol provoked bigemini and TdP in freely roaming LQT3 mice. No arrhythmias were provoked by physical stress, mental stress, isoproterenol, or atropine. In isolated, beating hearts, carbachol did not prolong action potentials per se, but caused bradycardia and rate-dependent action potential prolongation. The muscarinic inhibitor AFDX116 prevented effects of carbachol on heart rate and arrhythmias. β-Adrenoceptor stimulation suppressed arrhythmias, shortened rate-corrected action potential duration, increased rate, and minimized difference in late sodium current between genotypes. β-Adrenoceptor density was reduced in LQT3 hearts. Acute β-adrenoceptor blockade by esmolol, propranolol or chronic propranolol in vivo did not suppress arrhythmias. Chronic flecainide pre-treatment prevented arrhythmias (all P < 0.05). Conclusion Cholinergic stimulation provokes arrhythmias in this model of LQT3 by triggering bradycardia. β-Adrenoceptor density is reduced, and β-adrenoceptor blockade does not prevent arrhythmias. Sodium channel blockade and β-adrenoceptor stimulation suppress arrhythmias by shortening repolarization and minimizing difference in late sodium current.
Cardiovascular Research | 2008
Stephanie Grote-Wessels; Hideo Baba; Peter Boknik; Ali El-Armouche; Larissa Fabritz; Hans-Jörg Gillmann; Dana Kucerova; Marek Matus; Frank U. Müller; Joachim Neumann; Martina Schmitz; Frank Stümpel; Gregor Theilmeier; Jeremias Wohlschlaeger; Wilhelm Schmitz; Uwe Kirchhefer
AIMS The progression of human heart failure is associated with increased protein phosphatase 1 (PP1) activity, which leads to a higher dephosphorylation of cardiac regulatory proteins such as phospholamban. In this study, we tested the hypothesis whether the inhibitor-2 (I-2) of PP1 can mediate cardiac protection by inhibition of PP1 activity. METHODS AND RESULTS We induced pressure overload by transverse aortic constriction (TAC) for 28 days in transgenic (TG) mice with heart-directed overexpression of a constitutively active form of I-2 (TG(TAC)) and wild-type littermates (WT(TAC)). Both groups were compared with sham-operated mice. TAC treatment resulted in comparable ventricular hypertrophy in both groups. However, TG(TAC) exhibited a higher atrial mass and an enhanced ventricular mRNA expression of beta-myosin heavy chain. The increased afterload was associated with the development of focal fibrosis in TG. Consistent with signs of overt heart failure, fractional shortening and diastolic function were impaired in TG(TAC) as revealed by Doppler echocardiography. The contractility was reduced in catheterized banded TG mice, which is in line with a depressed shortening of isolated myocytes. This is due to profoundly abnormal cytosolic Ca(2+) transients and a reduced stimulation of phosphorylation of phospholamban (PLB)(Ser16) after TAC in TG mice. Moreover, administration of isoproterenol was followed by a blunted contractile response in isolated myocytes of TG(TAC) mice. CONCLUSION These results suggest that cardiac-specific overexpression of a constitutively active form of I-2 is deleterious for cardiac function under conditions of pressure overload. Thus, the long-term inhibition of PP1 by I-2 is not a therapeutic option in the treatment of heart failure.
Journal of Molecular and Cellular Cardiology | 2010
Uwe Kirchhefer; Diana Wehrmeister; Alex V. Postma; Gottfried Pohlentz; Michael Mormann; Dana Kucerova; Frank U. Müller; Wilhelm Schmitz; Eric Schulze-Bahr; Arthur A.M. Wilde; Joachim Neumann
Mutations in the human cardiac calsequestrin gene (CASQ2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT-2). This inherited disorder is characterized by life-threatening arrhythmias induced by physical and emotional stress in young patients. Here we identified a novel heterozygous missense mutation (K206N) in the CASQ2 gene in a symptomatic family in which one member died of cardiac arrest. The functional properties of CSQ(K206N) were investigated in comparison to the wild-type form of CASQ2 (CSQ(WT)) by expression in eukaryotic cell lines and neonatal mouse myocytes. The mutation created an additional N-glycosylation site resulting in a higher molecular weight form of the recombinant protein on immunoblots. The mutation reduced the Ca(2+) binding capacity of the protein and exhibited an altered aggregation state. Consistently, CSQ(K206N)-expressing myocytes exhibited an impaired response to caffeine administration, suggesting a lower Ca(2+) load of the sarcoplasmic reticulum (SR). The interaction of the mutated CSQ with triadin and the protein levels of the ryanodine receptor were unchanged but the maximal specific [(3)H]ryanodine binding was increased in CSQ(K206N)-expressing myocytes, suggesting a higher opening state of the SR Ca(2+) release channel. Myocytes with expression of CSQ(K206N) showed a higher rate of spontaneous SR Ca(2+) releases under basal conditions and after beta-adrenergic stimulation. We conclude that CSQ(K206N) caused a reduced Ca(2+) binding leading to an abnormal regulation of intracellular Ca(2+) in myocytes. This may then contribute to the increased propensity to trigger spontaneous Ca(2+) transients in CSQ(K206N)-expressing myocytes.