Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uwe Oelfke is active.

Publication


Featured researches published by Uwe Oelfke.


Pediatric Blood & Cancer | 2008

Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function.

Thomas E. Merchant; Chia-Ho Hua; Hemant Shukla; Xiaofei Ying; Simeon Nill; Uwe Oelfke

To determine whether proton radiotherapy has clinical advantages over photon radiotherapy, we modeled the dose characteristics of both to critical normal tissue volumes using data from patients with four types of childhood brain tumors.


Physics in Medicine and Biology | 2008

Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy

D. Pflugfelder; Jan J. Wilkens; Uwe Oelfke

The sharp dose gradients which are possible in intensity modulated proton therapy (IMPT) not only offer the possibility of generating excellent target coverage while sparing neighbouring organs at risk, but can also lead to treatment plans which are very sensitive to uncertainties in treatment variables such as the range of individual Bragg peaks. We developed a method to account for uncertainties of treatment variables in the optimization based on a worst case dose distribution. The worst case dose distribution is calculated using several possible realizations of the uncertainties. This information is used by the objective function of the inverse treatment planning system to generate treatment plans which are acceptable under all considered realizations of the uncertainties. The worst case optimization method was implemented in our in-house treatment planning software KonRad in order to demonstrate the usefulness of this approach for clinical cases. In this paper, we investigated range uncertainties, setup uncertainties and a combination of both uncertainties. Using our method the sensitivity of the resulting treatment plans to these uncertainties is considerably reduced.


Physics in Medicine and Biology | 2006

Linac-integrated 4D cone beam CT: first experimental results

Lars Dietrich; Siri Jetter; Thomas Tücking; Simeon Nill; Uwe Oelfke

A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patients abdominal region with a fixation belt. The comparison of the reconstructed 4D CBCT images and the corresponding 4D CT images used for the treatment planning provides the required information for the calculation of possible setup errors. So, a repositioning of the patient is feasible even though the patient moves due to respiration. In addition to the external signal, the position of the diaphragm in the cranial-caudal direction could be extracted from each projection. Both independent sources of information show a very good agreement of the phase and even the amplitude of the movement and the external signal respectively. This suggests the usability of such a system for a gated dose delivery approach. However, more studies involving patients with different incidences have to be carried out to confirm these first results.


Radiotherapy and Oncology | 2010

The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide.

S. Korreman; Coen R. N. Rasch; H. McNair; D. Verellen; Uwe Oelfke; Philippe Maingon; Ben J. Mijnheer; Vincent Khoo

The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT.


Physics in Medicine and Biology | 2004

Inclusion of organ movements in IMRT treatment planning via inverse planning based on probability distributions

Jan Unkelbach; Uwe Oelfke

In this paper, we investigate an off-line strategy to incorporate inter-fraction organ motion in IMRT treatment planning. It was suggested that inverse planning could be based on a probability distribution of patient geometries instead of a single snap shot. However, this concept is connected to two intrinsic problems: first, this probability distribution has to be estimated from only a few images; and second, the distribution is only sparsely sampled over the treatment course due to a finite number of fractions. In the current work, we develop new concepts of inverse planning which account for these two problems.


Physics in Medicine and Biology | 1996

Proton dose monitoring with PET: quantitative studies in Lucite

Uwe Oelfke; G K Y Lam; M S Atkins

The feasibility of using PET for proton dose monitoring is examined here in detail. First experimental studies in a Lucite phantom have been performed at the medical TRIUMF proton beamline for proton energies of 62 MeV and 110 MeV. The proton dose delivered to the phantom ranged from 16 Gy up to 317 Gy. The induced activity was analysed 20-40 min after the irradiation with a PET scanner. The obtained depth activity profiles were compared to our calculation based on a model using available isotope production cross-section data. Both the observed absolute count rates and the activity profiles were found to agree very well with this model. Effects such as proton range straggling, inelastic nuclear interactions and the energy spectrum of the emitted positrons were studied in detail and found to change the activities by 5-10%. The lateral deposition of dose in the phantom could be very well localized by the induced activity. However, the spatial correlation between dose depth profiles and depth activity profiles was found to be poor, hence the extraction of isodose profiles from activity profiles seems to be very difficult.


Medical Physics | 2000

What is the optimum leaf width of a multileaf collimator

Thomas Bortfeld; Uwe Oelfke; Simeon Nill

UNLABELLED The following question is investigated: How narrow do the leaves of a multileaf collimator have to be such that further reduction of the leaf width does not lead to physical improvements of the dose distribution. Because of the physical principles of interaction between radiation and matter, dose distributions in radiotherapy are generally relatively smooth. According to the theory of sampling, the dose distribution can therefore be represented by a set of evenly spaced samples. The distance between the samples is identified with the distance between the leaf centers of a multileaf collimator. The optimum sampling distance is derived from the 20% to 80% field edge penumbra through the concept of the dose deposition kernel, which is approximated by a Gaussian. The leaf width of the multileaf collimator is considered to be independent from the sampling distance. Two cases are studied in detail: (i) the leaf width equals the sampling distance, which is the regular case, and (ii) the leaf width is twice the sampling distance. The practical delivery of the latter treatment geometry requires a couch movement or a collimator rotation. The optimum sampling distance equals the 20%-80% penumbra divided by 1.7 and is on the order of 1.5-2 mm for a typical 6 MV beam in soft tissue. The optimum leaf width equals this sampling distance in the regular case. A relatively small deterioration results if the leaf width is doubled, while the sampling distance remains the same. The deterioration can be corrected for by deconvolving the fluence profile with an inverse filter. CONCLUSIONS With the help of the sampling theory and, more generally, the theory of linear systems, one can find a general answer to the question about the optimum leaf width of a multileaf collimator from a physical point of view. It is important to distinguish between the sampling distance and the leaf width. The sampling distance is more critical than the leaf width. The leaf width can be up to twice as large as the sampling width. Furthermore, the derived sampling distance can be used to select the optimum resolution of both the fluence and the dose grid in dose calculation and inverse planning algorithms.


Physics in Medicine and Biology | 2004

A phenomenological model for the relative biological effectiveness in therapeutic proton beams

Jan J. Wilkens; Uwe Oelfke

To study the effects of a variable relative biological effectiveness (RBE) in inverse treatment planning for proton therapy, fast methods for three-dimensional RBE calculations are required. We therefore propose a simple phenomenological model for the RBE in therapeutic proton beams. It describes the RBE as a function of the dose, the linear energy transfer (LET) and tissue specific parameters. Published experimental results for the dependence of the parameters alpha and beta from the linear-quadratic model on the dose averaged LET were evaluated. Using a linear function for alpha(LET) in the relevant LET region below 30 keV per micrometre and a constant beta, a simple formula for the RBE could be derived. The new model was able to reproduce the basic dependences of RBE on dose and LET, and the RBE values agreed well with experimental results. The model was also applied to spread-out Bragg peaks (SOBP), where the main effects of a variable RBE are an increase of the RBE along the SOBP plateau, and a shift in depth of the distal falloff. The new method allows fast RBE estimations and has therefore potential applications in iterative treatment planning for proton therapy.


Radiation Oncology | 2006

Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences

Christoph Thilmann; Simeon Nill; Thomas Tücking; Angelika Höss; Bernd Hesse; Lars Dietrich; Rolf Bendl; Bernhard Rhein; Peter Häring; Christian Thieke; Uwe Oelfke; Juergen Debus; Peter E. Huber

BackgroundThe purpose of the study was the clinical implementation of a kV cone beam CT (CBCT) for setup correction in radiotherapy.Patients and methodsFor evaluation of the setup correction workflow, six tumor patients (lung cancer, sacral chordoma, head-and-neck and paraspinal tumor, and two prostate cancer patients) were selected. All patients were treated with fractionated stereotactic radiotherapy, five of them with intensity modulated radiotherapy (IMRT). For patient fixation, a scotch cast body frame or a vacuum pillow, each in combination with a scotch cast head mask, were used. The imaging equipment, consisting of an x-ray tube and a flat panel imager (FPI), was attached to a Siemens linear accelerator according to the in-line approach, i.e. with the imaging beam mounted opposite to the treatment beam sharing the same isocenter. For dose delivery, the treatment beam has to traverse the FPI which is mounted in the accessory tray below the multi-leaf collimator. For each patient, a predefined number of imaging projections over a range of at least 200 degrees were acquired. The fast reconstruction of the 3D-CBCT dataset was done with an implementation of the Feldkamp-David-Kress (FDK) algorithm. For the registration of the treatment planning CT with the acquired CBCT, an automatic mutual information matcher and manual matching was used.Results and discussionBony landmarks were easily detected and the table shifts for correction of setup deviations could be automatically calculated in all cases. The image quality was sufficient for a visual comparison of the desired target point with the isocenter visible on the CBCT. Soft tissue contrast was problematic for the prostate of an obese patient, but good in the lung tumor case. The detected maximum setup deviation was 3 mm for patients fixated with the body frame, and 6 mm for patients positioned in the vacuum pillow. Using an action level of 2 mm translational error, a target point correction was carried out in 4 cases. The additional workload of the described workflow compared to a normal treatment fraction led to an extra time of about 10–12 minutes, which can be further reduced by streamlining the different steps.ConclusionThe cone beam CT attached to a LINAC allows the acquisition of a CT scan of the patient in treatment position directly before treatment. Its image quality is sufficient for determining target point correction vectors. With the presented workflow, a target point correction within a clinically reasonable time frame is possible. This increases the treatment precision, and potentially the complex patient fixation techniques will become dispensable.


Acta Oncologica | 2005

Does electron and proton therapy reduce the risk of radiation induced cancer after spinal irradiation for childhood medulloblastoma? A comparative treatment planning study

Xiangkui Mu; Thomas Björk-Eriksson; Simeon Nill; Uwe Oelfke; Karl-Axel Johansson; Giovanna Gagliardi; Lennart Johansson; Mikael Karlsson; Björn Zackrisson

Aim The aim of this treatment planning comparison study was to explore different spinal irradiation techniques with respect to the risk of late side-effects, particularly radiation-induced cancer. The radiotherapy techniques compared were conventional photon therapy, intensity modulated x-ray therapy (IMXT), conventional electron therapy, intensity/energy modulated electron therapy (IMET) and proton therapy (IMPT). Material and methods CT images for radiotherapy use from five children, median age 8 and diagnosed with medulloblastoma, were selected for this study. Target volumes and organs at risk were defined in 3-D. Treatment plans using conventional photon therapy, IMXT, conventional electron therapy, IMET and IMPT were set up. The probability of normal tissue complication (NTCP) and the risk of cancer induction were calculated using models with parameters-sets taken from published data for the general population; dose data were taken from dose volume histograms (DVH). Results Similar dose distributions in the targets were achieved with all techniques but the absorbed doses in the organs-at-risk varied significantly between the different techniques. The NTCP models based on available data predicted very low probabilities for side-effects in all cases. However, the effective mean doses outside the target volumes, and thus the predicted risk of cancer induction, varied significantly between the techniques. The highest lifetime risk of secondary cancers was estimated for IMXT (30%). The lowest risk was found with IMPT (4%). The risks associated with conventional photon therapy, electron therapy and IMET were 20%, 21% and 15%, respectively. Conclusion This model study shows that spinal irradiation of young children with photon and electron techniques results in a substantial risk of radiation-induced secondary cancers. Multiple beam IMXT seems to be associated with a particularly high risk of secondary cancer induction. To minimise this risk, IMPT should be the treatment of choice. If proton therapy is not available, advanced electron therapy may provide a better alternative.

Collaboration


Dive into the Uwe Oelfke's collaboration.

Top Co-Authors

Avatar

Simeon Nill

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Martin F. Fast

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Peter Ziegenhein

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

C P Kamerling

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Martin J. Menten

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Mark Bangert

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Bartzsch

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Jürgen Debus

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

F. McDonald

The Royal Marsden NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge