Uwe Schilde
University of Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uwe Schilde.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Jong Seto; Yurong Ma; Sean A. Davis; Fiona C. Meldrum; Aurélien Gourrier; Yi-Yeoun Kim; Uwe Schilde; Michael Sztucki; Manfred Burghammer; Sergey Maltsev; Christian Jäger; Helmut Cölfen
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature’s demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.
Angewandte Chemie | 2010
Franziska Debatin; Arne Thomas; Alexandra Kelling; Niklas Hedin; Zoltán Bacsik; Irena Senkovska; Stefan Kaskel; Matthias Junginger; Holger S. P. Müller; Uwe Schilde; Christian Jäger; Alwin Friedrich; Hans-Jürgen Holdt
In Situ Synthesis of an Imidazolate-4-amide-5-imidate Ligand and Formation of a Microporous Zinc-Organic Framework with H-2-and CO2-Storage Ability
Journal of the American Chemical Society | 2010
Minghua Huang; Uwe Schilde; Michael U. Kumke; Markus Antonietti; Helmut Cölfen
The principle of polymer-controlled crystallization of inorganic materials has been successfully transferred to functional aromatic organic dyes, in this instance 3,4,9,10-perylenetetracarboxylic acid potassium salt (PTCAPS), after its single-crystal structure was determined. The cationic double hydrophilic block copolymer poly(ethylene glycol)-block-branched-poly(ethyleneimine) (PEG-b-PEI) was used as the polymer additive to modify the crystallization of PTCAPS. Ultralong hierarchically structured PTCAPS microbelts with constant width and thickness of each individual belt have been fabricated. The belts are a mesocrystalline assembly of primary nanoparticles with high-energy anionic {001} faces stabilized by polymer complexation. Polarization microscopy, X-ray diffraction, optical absorption spectra, and fluorescence spectra indicate the favorable orientation of the 1D microbelts in the close-stacking direction and reveal a specific 1D superstructure fluorescence. Electrical conductivity measurements performed on a single nanobelt disclose in the doped state a remarkably high electronic conductivity and further demonstrate extended, wirelike pi-pi interactions along the [020] long axis of the belts. Together with the very large length of the belts and their organic-organic hybrid nanostructure, this makes these organic wires potentially interesting for the field of nano-/micro-optoelectronics.
Journal of the American Chemical Society | 2014
Suvendu Sekhar Mondal; Asamanjoy Bhunia; Alexandra Kelling; Uwe Schilde; Christoph Janiak; Hans-Jürgen Holdt
In situ imidazolate-4,5-diamide-2-olate linker generation leads to the formation of a [Zn14(L2)12(O)(OH)2(H2O)4] molecular building block (MBB) with a Zn6 octahedron inscribed in a Zn8 cube. The MBBs connect by amide-amide hydrogen bonds to a 3D robust supramolecular network which can be activated for N2, CO2, CH4, and H2 gas sorption.
Chemistry: A European Journal | 2008
Daniel Zehm; Werner Fudickar; Melanie Hans; Uwe Schilde; Alexandra Kelling; Torsten Linker
A series of 9,10-diarylanthracenes with various substituents at the ortho positions have been synthesised by palladium-catalysed cross-coupling reactions. Such compounds exhibit interesting physical properties and can be applied as molecular switches. Despite the high steric demand of the substituents, products were formed in moderate-to-good yields. In some cases, microwave conditions further improved yields. Bis-coupling afforded two isomers (syn and anti) that do not interconvert at room temperature. These products were easily separated and their relative stereochemistries were unequivocally assigned by NMR spectroscopy and X-ray analysis. The syn and anti isomers exhibit different physical properties (e.g., melting points and solubilities) and interconversion by rotation around the aryl-aryl axis commences at <100 degrees C for fluoro-substituted diarylanthracenes and at >300 degrees C for alkyl- or alkoxy-substituted diarylanthracenes. The reactions with singlet oxygen were studied separately and revealed different reactivities and reaction pathways. The yields and reactivities depend on the size and electronic nature of the substituents. The anti isomers form the same 9,10-endoperoxides as the syn species, occasionally accompanied by unexpected 1,4-endoperoxides as byproducts. Thermolysis of the endoperoxides exclusively yielded the syn isomers. The interesting rotation around the aryl-aryl axis allows the application of 9,10-diarylanthracenes as molecular switches, which are triggered by light and air under mild conditions. Finally, the oxygenation and thermolysis sequence provides a simple, synthetic access to a single stereoisomer (syn) from an unselective coupling step.
Journal of Organic Chemistry | 2011
Bernd Schmidt; Frank Hölter; Alexandra Kelling; Uwe Schilde
The first total synthesis of the natural product (3S,7R)-5,6-dehydro-de-O-methyl centrolobine and various analogues is reported, using a highly regio- and diastereoselective Mizoroki-Heck reaction of phenol diazonium salts and enantiopure dihydropyrans. The assigned relative configuration was confirmed by single-crystal X-ray structure analysis, but a revision of the absolute configuration is proposed based on polarimetric measurement.
European Journal of Organic Chemistry | 2001
Michael Sefkow; Alexandra Kelling; Uwe Schilde
Efficient synthesis of 1-, 4-, and 5-caffeoylquinic acid was achieved in three or four steps with suitably protected quinic acid precursors, in overall yields of 41%, 36%, and 60% [from quinic acid (1)]. 1-Caffeoylquinic acid was prepared by esterification of acetone quinide 7 with caffeoyl chloride 6, followed by a two-step hydrolysis of all protecting groups. Caffeoylquinic acids 4 and 5 were prepared from known quinic acid derivatives, 13 and 25, by selective esterification of the secondary hydroxy groups and hydrolysis with 1 M HCl. However, initial attempts to prepare fully protected quinic acid derivatives with a free hydroxy group only at either C-4 or C-5, for the synthesis of 4 and 5, were not successful. Kinetic acetalization of pentasilylated quinic acid 15 using bis(dimethoxy acetals) afforded several crystalline reaction products which were identified by X-ray diffraction. Diacetal 20, derived from a vicinal cis-diol, was unambiguously identified for the first time. Unexpectedly, it has two trans-diaxially oriented methoxy groups, forcing the quinide ring into a twist-boat conformation.
CrystEngComm | 2014
Suvendu Sekhar Mondal; Asamanjoy Bhunia; Serhiy Demeshko; Alexandra Kelling; Uwe Schilde; Christoph Janiak; Hans-Jürgen Holdt
A Co(II)–imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N2, CO2, CH4 and H2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.
Chemistry: A European Journal | 2011
Bernd Schmidt; René Berger; Alexandra Kelling; Uwe Schilde
Alkynes and phenol diazonium salts undergo a Pd-catalyzed [2+2+1] cyclization reaction to spiro[4,5]decatetraene-7-ones. This structure was confirmed for one example by X-ray single-crystal structure analysis. The reaction is believed to proceed through oxidative addition of the phenol diazonium cation to Pd(0), subsequent insertion of two alkynes, followed by irreversible spirocyclization.
Chemistry: A European Journal | 2012
Franziska Debatin; Karsten Behrens; Jens Weber; Igor A. Baburin; Arne Thomas; Johannes Schmidt; Irena Senkovska; Stefan Kaskel; Alexandra Kelling; Niklas Hedin; Zoltán Bacsik; Stefano Leoni; Gotthard Seifert; Christian Jäger; Christina Günter; Uwe Schilde; Alwin Friedrich; Hans-Jürgen Holdt
We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-1-4, IFP = imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R = Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.0-1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and (1)H MAS and (13)C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345-400 °C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO(2) was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH(4) (at 298 K), CO(2) (at 298 K) and H(2) (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO(2) is physisorbed on IFP-1-4 under dry conditions and that both CO(2) and H(2)O are physisorbed on IFP-1 under moist conditions.