Uwe Schmock
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uwe Schmock.
Archive | 2003
Filip Lindskog; Alexander J. McNeil; Uwe Schmock
•• • • •• • • • • • • • • • • • • • • •• • •• • • •• • • • • • • • •• • • • • • • • • • • •• • • • •• • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • •• • • • •• • • • • • • • • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • ••• • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • •• • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • •• • • • • • • •• • • • • • • • • • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • •• • • • • • • • • • • • • • • • • • •• • • • • • • •• • • • • • • • • • •• • • • • • • •• • • •• • • • • • • • • •• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • •• • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • •• • •• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • •• • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • •• • • • • • • •• • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • •• • •• • • • • • • • • • •• • • • • • • • • • • •• • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • •• • • • • • • • • • • • • •• • • •• • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2002
Peter Eichelsbacher; Uwe Schmock
Abstract We prove large deviation principles (LDP) for m-fold products of empirical measures and for U-empirical measures, where the underlying i.i.d. random variables take values in a measurable (not necessarily Polish) space (S, S ) . The results can be formulated on suitable subsets of all probability measures on (S m , S ⊗m ) . We endow the spaces with topologies, which are stronger than the usual τ-topology and which make integration with respect to certain unbounded, Banach-space valued functions a continuous operation. A special feature is the non-convexity of the rate function for m⩾2. Improved versions of LDPs for Banach-space valued U- and V-statistics are obtained as a particular application. Some further applications concerning the Gibbs conditioning principle and a process level LDP are mentioned.
Finance and Stochastics | 2002
Uwe Schmock; Steven E. Shreve; Uwe Wystup; Neue Mainzer Strasse
Abstract. Options with discontinuous payoffs are generally traded above their theoretical Black–Scholes prices because of the hedging difficulties created by their large delta and gamma values. A theoretical method for pricing these options is to constrain the hedging portfolio and incorporate this constraint into the pricing by computing the smallest initial capital which permits super-replication of the option. We develop this idea for exotic options, in which case the pricing problem becomes one of stochastic control. Our motivating example is a call which knocks out in the money, and explicit formulas for this and other instruments are provided.
Stochastic Processes and their Applications | 1989
Erwin Bolthausen; Uwe Schmock
For strongly ergodic discrete time Markov chains we discuss the possible limits as n-->[infinity] of probability measures on the path space of the form exp(nH(Ln)) dP/Zn· Ln is the empirical measure (or sojourn measure) of the process, H is a real-valued function (possibly attaining -[infinity]) on the space of probability measures on the state space of the chain, and Zn is the appropriate norming constant. The class of these transformations also includes conditional laws given Ln belongs to some set. The possible limit laws are mixtures of Markov chains minimizing a certain free energy. The method of proof strongly relies on large deviation techniques.
Stochastic Processes and their Applications | 1998
Peter Eichelsbacher; Uwe Schmock
This paper is devoted to the well known transformations that preserve a large deviation principle (LDP), namely, the contraction principle with approximately continuous maps and the concepts of exponential equivalence and exponential approximations. We generalize these transformations to completely regular topological state spaces, give some examples and, as an illustration, reprove a generalization of Sanovs theorem, due to de Acosta (J. Appl. Probab. 31 A (1994) 41-47). Using partition-dependent couplings, we then extend this version of Sanovs theorem to triangular arrays and prove a full LDP for the empirical measures of exchangeable sequences with a general measurable state space.
Archive | 2012
Jean-Dominique Deuschel; Barbara Gentz; Wolfgang König; Max von Renesse; Michael Scheutzow; Uwe Schmock
We survey recent results and open questions on the ballistic phase of stretched polymers in both annealed and quenched random env ironments. This paper is dedicated to Erwin Bolthausen on the occasion of his 65th birthday
Mathematical Finance | 2012
Verena Goldammer; Uwe Schmock
The long‐term limit of zero‐coupon rates with respect to the maturity does not always exist. In this case we use the limit superior and prove corresponding versions of the Dybvig–Ingersoll–Ross theorem, which says that long‐term spot and forward rates can never fall in an arbitrage‐free model. Extensions of popular interest rate models needing this generalization are presented. In addition, we discuss several definitions of arbitrage, prove asymptotic minimality of the limit superior of the spot rates, and illustrate our results by several continuous‐time short‐rate models.
Stochastics and Stochastics Reports | 1990
Uwe Schmock
For Te[0,oo) and a Brownian motion path j3eQ: = {0eC([O,oo),IR):0(O)=O} denote by Cj(P) the length of the compact interval C7{0): = {/?(t):fe[O,r]}. Fix v 0 and define Pj(A) = (lexp(vT|Cr|))/E(exp(...
Probability Theory and Related Fields | 1993
Erwin Bolthausen; Jean-Dominique Deuschel; Uwe Schmock
SummaryWe discuss the limiting path measures of Markov processes with either a mean field or a polaron type interaction of the paths. In the polaron type situation the strength is decaying at large distances on the time axis, and so the interaction is of short range in time. In contrast, in the mean field model, the interaction is weak, but of long range in time. Donsker and Varadhan proved that for the partition functions, there is a transition from the polaron type to the mean field interaction when passing to a limit by letting the strength tend to zero while increasing the range. The discussion of the path measures is more subtle. We treat the mean field case as an example of a differentiable interaction and discuss the transition from the polaron type to the mean field interaction for two instructive examples.
Probability Theory and Related Fields | 2018
Mathias Beiglböck; Manu Eder; Christiane Elgert; Uwe Schmock
We adapt ideas and concepts developed in optimal transport (and its martingale variant) to give a geometric description of optimal stopping times