Uwe Ulbrich
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uwe Ulbrich.
Bulletin of the American Meteorological Society | 2013
Urs Neu; M. G. Akperov; Nina Bellenbaum; Rasmu S. Benestad; Richard Blender; Rodrigo Caballero; Angela Cocozza; Helen F. Dacre; Yang Feng; Klaus Fraedrich; Jens Grieger; Sergey K. Gulev; John Hanley; Tim Hewson; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Ina Kindem; Gregor C. Leckebusch; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Mareike Schuster; Ian Simmonds; Mark R. Sinclair; Michael Sprenger
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of wea...
Bulletin of the American Meteorological Society | 2013
Urs Neu; M. G. Akperov; Nina Bellenbaum; Rasmus Benestad; Richard Blender; Rodrigo Caballero; Angela Cocozza; Helen F. Dacre; Yang Feng; Klaus Fraedrich; Jens Grieger; Sergey K. Gulev; John Hanley; Tim Hewson; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Ina Kindem; Gregor C. Leckebusch; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Mareike Schuster; Ian Simmonds; Mark R. Sinclair; Michael Sprenger
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of wea...
Journal of Climate | 2008
Uwe Ulbrich; Joaquim G. Pinto; H. Kupfer; Gregor C. Leckebusch; Thomas Spangehl; Mark Reyers
Winter storm-track activity over the Northern Hemisphere and its changes in a greenhouse gas scenario (the Special Report on Emission Scenarios A1B forcing) are computed from an ensemble of 23 single runs from 16 coupled global climate models (CGCMs). All models reproduce the general structures of the observed climatological storm-track pattern under present-day forcing conditions. Ensemble mean changes resulting from anthropogenic forcing include an increase of baroclinic wave activity over the eastern North Atlantic, amounting to 5%–8% by the end of the twenty-first century. Enhanced activity is also found over the Asian continent and over the North Pacific near the Aleutian Islands. At high latitudes and over parts of the subtropics, activity is reduced. Variations of the individual models around the ensemble average signal are not small, with a median of the pattern correlation near r 0.5. There is, however, no evidence for a link between deviations in present-day climatology and deviations with respect to climate change.
Meteorologische Zeitschrift | 2005
Joaquim G. Pinto; Thomas Spangehl; Uwe Ulbrich; P. Speth
Northern Hemisphere cyclone activity is assessed by applying an algorithm for the detection and tracking of synoptic scale cyclones to mean sea level pressure data. The method, originally developed for the Southern Hemisphere, is adapted for application in the Northern Hemisphere winter season. NCEP-Reanalysis data from 1958/59 to 1997/98 are used as input. The sensitivities of the results to particular parameters of the algorithm are discussed for both case studies and from a climatological point of view. Results show that the choice of settings is of major relevance especially for the tracking of smaller scale and fast moving systems. With an appropriate setting the algorithm is capable of automatically tracking different types of cyclones at the same time: Both fast moving and developing systems over the large ocean basins and smaller scale cyclones over the Mediterranean basin can be assessed. The climatology of cyclone variables, e.g., cyclone track density, cyclone counts, intensification rates, propagation speeds and areas of cyclogenesis and -lysis gives detailed information on typical cyclone life cycles for different regions. The lowering of the spatial and temporal resolution of the input data from full resolution T62/06h to T42/12h decreases the cyclone track density and cyclone counts. Reducing the temporal resolution alone contributes to a decline in the number of fast moving systems, which is relevant for the cyclone track density. Lowering spatial resolution alone mainly reduces the number of weak cyclones.
International Journal of Climatology | 1999
Uwe Ulbrich; M. Christoph; Joaquim G. Pinto; João Corte-Real
The relationship between winter (DJF) rainfall over Portugal and the variable large scale circulation is addressed. It is shown that the poles of the sea level pressure (SLP) field variability associated with rainfall variability are shifted about 15° northward with respect to those used in standard definitions of the North Atlantic Oscillation (NAO). It is suggested that the influence of NAO on rainfall dominantly arises from the associated advection of humidity from the Atlantic Ocean. Rainfall is also related to different aspects of baroclinic wave activity, the variability of the latter quantity in turn being largely dependent on the NAO. A negative NAO index (leading to increased westerly surface geostrophic winds into Portugal) is associated with an increased number of deep (ps<980 hPa) surface lows over the central North Atlantic and of intermediate (980<ps<1000 hPa) surface lows over North-western Europe. It is suggested that these distant surface lows have no direct influence on local Portuguese precipitation, but rather contribute to advection at their southern flanks. The other aspect of baroclinic wave activity varying with the NAO is the mid-tropospheric storm track (defined by the 500 hPa bandpass-filtered geopotential height variance). A possible local influence of the storm track due to vertical motions ahead of the upper air troughs cannot be unambiguously separated from the effect of advection. A separate influence of local surface cyclones over the Iberian peninsula which may, for instance, arise from the large scale ascent of air, is revealed by the statistics: for a given advection, rainfall amounts for months with local cyclone cores over the considered region tend to exceed those without. Copyright
Archive | 2013
Silvio Gualdi; Samuel Somot; Wilhelm May; Sergio Castellari; Michel Déqué; Mario Adani; Vincenzo Artale; Alessio Bellucci; Joseph S. Breitgand; Adriana Carillo; Richard C. Cornes; Alessandro Dell’Aquila; Clotilde Dubois; Dimitrios Efthymiadis; Alberto Elizalde; Luis Gimeno; C. M. Goodess; Ali Harzallah; Simon O. Krichak; Franz G. Kuglitsch; Gregor C. Leckebusch; Blandine L’heveder; Laurent Li; Piero Lionello; Jürg Luterbacher; Annarita Mariotti; Antonio Navarra; Raquel Nieto; Katrin M. Nissen; Paolo Oddo
In this chapter we show results from an innovative multi-model system used to produce climate simulations with a realistic representation of the Mediterranean Sea. The models (hereafter simply referred to as the “CIRCE models”) are a set of five coupled climate models composed by a high-resolution Mediterranean Sea coupled with a relatively high-resolution atmospheric component and a global ocean, which allow, for the first time, to explore and assess the role of the Mediterranean Sea and its complex, small-scale dynamics in the climate of the region. In particular, they make it possible to investigate the influence that local air-sea feedbacks might exert on the mechanisms responsible for climate variability and change in the European continent, Middle East and Northern Africa. In many regards, they represent a new and innovative approach to the problem of regionalization of climate projections in the Mediterranean region.
Journal of the Atmospheric Sciences | 1997
M. Christoph; Uwe Ulbrich; P. Speth
Abstract The seasonal cycle of the North Pacific and the North Atlantic storm track activity is investigated on the basis of daily National Meteorological Center (now known as NCEP) upper-air analyses (1946–89) and of data from the ECHAM3 T42 atmospheric general circulation model. Emphasis is put on the midwinter suppression of the Pacific storm track. This feature of seasonal variability is not sensitive to a particular definition of midlatitude synoptic wave activity, as is shown by applying a common definition of area mean storm track intensity. The suppression is reproduced by the atmospheric model with very similar characteristics. It is attributed to a negative correlation between the storm track intensity and the speed of the subtropical jet at 250 hPa for average zonal winds exceeding the threshold of approximately 45 m s−1, contrasting with a positive correlation below this value. The lack of an analogous behavior over the Atlantic may be assigned to the lower wind speeds there. In a 3·CO2 time-s...
Meteorologische Zeitschrift | 2013
Uwe Ulbrich; Gregor C. Leckebusch; Jens Grieger; Mareike Schuster; M. G. Akperov; Mikhail Yu. Bardin; Yang Feng; Sergey K. Gulev; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Urs Neu; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Ian Simmonds; Natalia Tilinina; Isabel F. Trigo; Sven Ulbrich; Xiaolan L. Wang; Heini Wernli
For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.
The Climate of the Mediterranean Region | 2012
Uwe Ulbrich; Piero Lionello; Danijel Belušić; Jucundus Jacobeit; Peter Knippertz; Franz G. Kuglitsch; Gregor C. Leckebusch; Jürg Luterbacher; Maurizio Maugeri; P. Maheras; Katrin M. Nissen; V. Pavan; Joaquim G. Pinto; Hadas Saaroni; S. Seubert; Andrea Toreti; Elena Xoplaki; Baruch Ziv
This chapter considers a set of issues related to the synoptic climatology of the Mediterranean region (MR). The main Northern Hemisphere teleconnections affecting the MR and their role on temperature, precipitation, and atmospheric cyclones are described. The characteristics of the cyclones in the MR are presented. The role of teleconnections and atmospheric regimes on temperature and precipitation is discussed. The content includes extremes of temperature, precipitation, wind, and storminess (considering also marine aspects such as waves and storm surges).
Meteorologische Zeitschrift | 2006
Joaquim G. Pinto; Thomas Spangehl; Uwe Ulbrich; P. Speth
Winter cyclone activity over the Northern Hemisphere is investigated in an ECHAM4/OPYC3 greenhouse gas scenario simulation. The goal of this investigation is to identify changes in cyclone activity associated with increasing concentrations. To this aim, two 50-year time periods are analysed, one representing present day climate conditions and the other a perturbed climate when CO 2 concentrations exceed twice the present concentrations. Cyclone activity is assessed using an automatic algorithm, which identifies and tracks cyclones based on sea level pressure fields. The algorithm detects not only large and long living cyclones over the main ocean basins, but also their smaller counterparts in secondary storm track regions like the Mediterranean Basin. For the present climate, results show a good agreement with NCEP-reanalysis, provided that the spectral and time resolutions of the reanalysis are reduced to those available for the model. Several prominent changes in cyclone activity are observed for the scenario period in comparison to the present day climate, especially over the main ocean basins. A significant decrease of overall cyclone track density is found between 35 and 55 degrees North, together with a small increase polewards. These changes result from two different signals for deep and medium cyclones: for deep cyclones (core pressure below 990 hPa) there is a poleward shift in the greenhouse gas scenario, while for medium cyclones (core pressure between 990 and 1010 hPa) a general decrease in cyclone counts is found. The same kind of changes (a shift for intense cyclones and an overall decrease for the weaker ones) are detected when distinguishing cyclones from their intensity, quantified in terms of ∇ 2 p. Thus, the simulated changes can not solely be attributed to alterations in mean sea level pressure. Instead, corresponding increases in upper-tropospheric baroclinicity suggest more favourable conditions for the development of stronger systems at higher latitudes, especially at the delta regions of the North Atlantic and the North Pacific storm tracks.