V. A. Demakov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. A. Demakov.
Microbiology | 2007
L. N. Anan’ina; E. G. Plotnikova; E. Yu. Gavrish; V. A. Demakov; L. I. Evtushenko
A chemoorganotrophic, moderately halophilic bacterium (strain SMB35) has been isolated from a naphthalene-utilizing microbial community obtained from salt mines (Perm region of Russia). Strain SMB35 grows in a wide salinity range, 0.5 to 30% (wt/vol) NaCl. Cells are gram-negative rods motile by means of a single polar flagellum. The predominant fatty acids are 16:1ω7, 16:0, 18:1ω7, and 19 cy. The major lipoquinone is an unsaturated ubiquinone with nine isoprene units (Q9). The DNA G+C content is 63.0 mol %. The 16S rDNA-based phylogenetic analysis has shown that strain SMB35 formed a separate clade in the cluster of the family Halomonadaceae. The 16S rDNA sequence similarity of the isolate to the members of the family is in the range from 90.6 to 95.1%. The phylogenetic and phenotypic differences from Halomonas elongata (the type species of the genus) and from other members of the family suggest that the isolate represents a novel genus and species, for which the name Salinicola socius gen. nov., sp. nov. is proposed. The type strain is SMB35T(=VKM B-2397T).
Microbiology | 2001
E. G. Plotnikova; O. V. Altyntseva; I. A. Kosheleva; I. F. Puntus; A. E. Filonov; E. Yu. Gavrish; V. A. Demakov; A. M. Boronin
Fifteen bacterial strains capable of utilizing naphthalene, phenanthrene, and biphenyl as the sole sources of carbon and energy were isolated from soils and bottom sediments contaminated with waste products generated by chemical- and salt-producing plants. Based on cultural, morphological, and chemotaxonomic characteristics, ten of these strains were identified as belonging to the genera Rhodococcus, Arthrobacter, Bacillus, and Pseudomonas. All ten strains were found to be halotolerant bacteria capable of growing in nutrient-rich media at NaCl concentrations of 1–1.5 M. With naphthalene as the sole source of carbon and energy, the strains could grow in a mineral medium with 1 M NaCl. Apart from being able to grow on naphthalene, six of the ten strains were able to grow on phenanthrene; three strains, on biphenyl; three strains, on octane; and one strain, on phenol. All of the strains were plasmid-bearing. The plasmids of the Pseudomonas sp. strains SN11, SN101, and G51 are conjugative, contain genes responsible for the degradation of naphthalene and salicylate, and are characterized by the same restriction fragment maps. The transconjugants that gained the plasmid from strain SN11 acquired the ability to grow at elevated NaCl concentrations. Microbial associations isolated from the same samples were able to grow at a NaCl concentration of 2.5 M.Fifteen bacterial strains capable of utilizing naphthalene, phenanthrene, and biphenyl as the sole sources of carbon and energy were isolated from soils and bottom sediments contaminated with waste products generated by chemical- and salt-producing plants. Based on cultural, morphological, and chemotaxonomic characteristics, ten of these strains were identified as belonging to the genera Rhodococcus, Arthrobacter, Bacillus, and Pseudomonas. All ten strains were found to be halotolerant bacteria capable of growing in nutrient-rich media at NaCl concentrations of 1–1.5 M. With naphthalene as the sole source of carbon and energy, the strains could grow in a mineral medium with 1 M NaCl. Apart from being able to grow on naphthalene, six of the ten strains were able to grow on phenanthrene; three strains, on biphenyl; three strains, on octane; and one strain, on phenol. All of the strains were plasmid-bearing. The plasmids of the Pseudomonas sp. strains SN11, SN101, and G51 are conjugative, contain genes responsible for the degradation of naphthalene and salicylate, and are characterized by the same restriction fragment maps. The transconjugants that gained the plasmid from strain SN11 acquired the ability to grow at elevated NaCl concentrations. Microbial associations isolated from the same samples were able to grow at a NaCl concentration of 2.5 M.
Microbiology | 2003
D. O. Rybkina; E. G. Plotnikova; Lubov V. Dorofeeva; Yu. L. Mironenko; V. A. Demakov
Strain B51 capable of degrading polychlorinated biphenyls (PCB) was isolated from soil contaminated with wastes from the chemical industry. Based on its morphological and chemotaxonomic characteristics, the strain was identified as a Microbacterium sp. Experiments with washed cells showed that strain B51 is able to degrade ortho- and para-substituted mono-, di-, and trichlorinated biphenyls (MCB, DCB, and TCB, respectively). Unlike the known PCB degraders, Microbacterium sp. B51 is able to oxidize the ortho-chlorinated ring of 2,2′-DCB and 2,4′-DCB and the para-chlorinated ring of 4.4′-DCB. The degradation of 2,4′-DCB and 4,4′-DCB was associated with the accumulation of 4-chlorobenzoic acid (4-CBA) in the medium in amounts comprising 80–90% of the theoretical yield. The strain was able to utilize 2-MCB, 2,2′-DCB, and their intermediate 2-CBA and to oxidize the mono(ortho)-chlorinated ring of 2,4,2′-TCB and the di(ortho-para)-chlorinated ring of 2,4,4′-TCB. A mixed culture of Microbacterium sp. B51 and the 4-CBA-degrading bacterium Arthrobacter sp. H5 was found to grow well on 1 g/l 2,4′-DCB as the sole source of carbon and energy.
Russian Journal of Ecology | 2011
E. G. Plotnikova; O. V. Yastrebova; L. N. Anan’ina; Lubov V. Dorofeeva; V. Ya. Lysanskaya; V. A. Demakov
Eight strains of bacteria capable of degrading polycyclic aromatic hydrocarbons have been isolated from soils and bottom sediments sampled in the region of Verkhnekamskoe potash deposit (Berezniki, Perm krai) and classified with the genus Arthrobacter on the basis of phylogenetic analysis (16S rRNA genes) and morphological and chemotaxonomic characters. According to the results of 16S rDNA sequence alignment, strains B905, SMB11, SMB145, SF27, and DF14 show the highest sequence homology to the type strain of A. crystallopoietes (99.7%), and strain SN17, to the type strain of A. arilaitensis (99.8%). The isolated strains are capable of growing on naphthalene and phenanthrene (as the sole sources of carbon and energy) in the presence of 60 mg/l NaCl. Their cells contain large plasmids ranging in size from 85 to 130 kb. Plasmid elimination from Arthrobacter sp. SF27 has proved to result in the loss of capacity for growing on naphthalene and phenanthrene, suggesting a plasmid localization of genes responsible for degradation of these compounds.
Microbiology | 2011
E. G. Plotnikova; L. N. Anan’ina; V. I. Krausova; E. V. Ariskina; N. V. Prisyazhnaya; A. T. Lebedev; V. A. Demakov; Ludmila I. Evtushenko
A halotolerant bacterium, strain SMB34T, was isolated from a naphthalene-utilizing bacterial consortium obtained from primitive technogeneous soil (Verkhnekamsk salt deposit, Perm region, Russia) by enrichment procedure. The strain itself was unable to degrade naphthalene and grew at NaCl concentrations up to 11% (w/v). The 16S rRNA-based phylogenetic analysis showed that the strain belongs to the genus Thalassospira. The DNA-DNA hybridization values between SMB34T and the type strains of phylogeneti-cally closest species (T. xiamenensis, T. profundimaris and T. tepidiphila) did not exceed 50%. The novel strain could be distinguished from the above species by the cell motility, MALDI/TOF mass spectra of whole cells and a range of physiological and biochemical characteristics. SMB34T also considerably differs from the recently described species T. xianhensis, with the most striking differences in the DNA G + C content (53. ± 1.0 vs. 61.2 ± 1.0 mol %) and predominant ubiquinones (Q-10 vs. Q-9). The data obtained suggest strain SMB34T (=VKM B-2527T = NBRC 106175T), designated as the type strain, represents a novel species, named Thalassospira permensis sp. nov.
Russian Journal of Ecology | 2006
E. G. Plotnikova; D. O. Rybkina; L. N. Anan’ina; O. V. Yastrebova; V. A. Demakov
Microorganisms capable of degrading monocyclic and polycyclic aromatic hydrocarbons and several chlorinated aromatic compounds were isolated from soils polluted with industrial waste from chemical plants. They were identified as representatives of the genera Pseudomonas, Flavobacterium, Alcaligenes, Rhodococcus, Microbacterium, Cellulomonas, Arthrobacter, and Brevibacterium. Among them, bacteria capable of utilizing xenobiotics in a wide range of ambient temperatures and pH and in the presence of high sodium chloride concentrations were revealed.
Applied Biochemistry and Microbiology | 2010
D. O. Egorova; E. S. Shumkova; V. A. Demakov; E. G. Plotnikova
Strain Rhodococcus sp. B7a isolated from artificially polluted soil destructs mono- and di-substituted ortho- and/or para-chlorinated biphenyls with utilization of chlorinated benzoic acids and shows high degradation activity as regards trichlorinated biphenyls. It is shown that p-hydroxybenzoic and protocatehoic acids are the products of p-chlorobenzoic acid catabolism.
Applied Biochemistry and Microbiology | 2007
A. Yu. Maksimov; Yu. G. Maksimova; M. V. Kuznetsova; V. F. Olontsev; V. A. Demakov
Rhodococcus ruber strain gt1, possessing nitrile hydratase activity, was immobilized by adsorption on carbon supports differing in structure and porosity. The adsorption capacity of the supports towards cells, the substrate of the nitrile hydratase reaction (acrylonitrile), and the product (acrylamide) was studied. Also, the effect of immobilization on nitrile hydratase activity of bacteria was investigated, and the operational stability of the immobilized biocatalyst was determined. It was shown that crushed and granulated active coals were more appropriate for immobilization than fibrous carbon adsorbents.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2011
Lyudmila N. Anan’ina; Olga V. Yastrebova; V. A. Demakov; E. G. Plotnikova
Eight moderately halotolerant naphthalene-degrading strains of the genus Rhodococcus isolated from soil samples and slime pit bottom sediment of the Verkhnekamsk salt mining region of Russia were characterized by PCR amplification of repetitive bacterial DNA elements (rep-PCR) and identified by 16S ribosomal RNA gene sequence analysis. The diversity of their dioxygenase (nar-like) genes was investigated as these genes are known to be involved in naphthalene-degradation. The analysis of the nar-like genes identified revealed their heterogeneity in the strains under study and identity to the known sequences of nar-like genes of previously characterized from members of the genus Rhodococcus.
Applied Biochemistry and Microbiology | 2003
A. Yu. Maksimov; M. V. Kuznetsova; G. V. Ovechkina; S. V. Kozlov; Yu. G. Maksimova; V. A. Demakov
Effects of some nitriles and amides, as well as glucose and ammonium, on the growth and the nitrile hydratase (EC 4.2.1.84) activity of the Rhodococcus sp. strain gt1 isolated from soil were studied. The activity of nitrile hydratase mainly depended on the carbon and nitrogen supply to cells. The activity of nitrile hydratase was high in the presence of glucose and ammonium at medium concentrations and decreased at concentrations of glucose of more than 0.3%. Saturated unsubstituted aliphatic nitriles and amides were found to be a good source of nitrogen and carbon. However, the presence of nitriles and amides in the medium was not absolutely necessary for the expression of the activity of nitrile hydratase of the Rhodococcus sp. strain gt1.