Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Ann Stewart is active.

Publication


Featured researches published by V. Ann Stewart.


The Journal of Infectious Diseases | 2009

Randomized, Double-Blind, Phase 2a Trial of Falciparum Malaria Vaccines RTS,S/AS01B and RTS,S/AS02A in Malaria-Naive Adults: Safety, Efficacy, and Immunologic Associates of Protection

Kent E. Kester; James F. Cummings; Opokua Ofori-Anyinam; Christian F. Ockenhouse; Urszula Krzych; Philippe Moris; Robert Schwenk; Robin Nielsen; Zufan Debebe; Evgeny Pinelis; Laure Y. Juompan; Jack Williams; Megan Dowler; V. Ann Stewart; Robert A. Wirtz; Marie-Claude Dubois; Marc Lievens; Joe Cohen; W. Ripley Ballou; D. Gray Heppner

BACKGROUND To further increase the efficacy of malaria vaccine RTS,S/AS02A, we tested the RTS,S antigen formulated using the AS01B Adjuvant System (GlaxoSmithKline Biologicals). METHODS In a double-blind, randomized trial, 102 healthy volunteers were evenly allocated to receive RTS,S/AS01B or RTS,S/AS02A vaccine at months 0, 1, and 2 of the study, followed by malaria challenge. Protected vaccine recipients were rechallenged 5 months later. RESULTS RTS,S/AS01B and RTS,S/AS02A were well tolerated and were safe. The efficacy of RTS,S/AS01B and RTS,S/AS02A was 50% (95% confidence interval [CI], 32.9%-67.1%) and 32% (95% CI, 17.6%-47.6%), respectively. At the time of initial challenge, the RTS,S/AS01B group had greater circumsporozoite protein (CSP)-specific immune responses, including higher immunoglobulin (Ig) G titers, higher numbers of CSP-specific CD4(+) T cells expressing 2 activation markers (interleukin-2, interferon [IFN]-gamma, tumor necrosis factor-alpha, or CD40L), and more ex vivo IFN-gamma enzyme-linked immunospots (ELISPOTs) than did the RTS,S/AS02A group. Protected vaccine recipients had a higher CSP-specific IgG titer (geometric mean titer, 188 vs 73 mug/mL; P < .001), higher numbers of CSP-specific CD4(+) T cells per 10(6) CD4(+) T cells (median, 963 vs 308 CSP-specific CD4(+) T cells/10(6) CD4(+) T cells; P < .001), and higher numbers of ex vivo IFN-gamma ELISPOTs (mean, 212 vs 96 spots/million cells; P < .001). At rechallenge, 4 of 9 vaccine recipients in each group were still completely protected. CONCLUSIONS The RTS,S/AS01B malaria vaccine warrants comparative field trials with RTS,S/AS02A to determine the best formulation for the protection of children and infants. The association between complete protection and immune responses is a potential tool for further optimization of protection. Trial registration. ClinicalTrials.gov identifier NCT00075049.


PLOS ONE | 2009

Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya

Bernhards Ogutu; Odika J. Apollo; Denise McKinney; Willis Okoth; Joram Siangla; Filip Dubovsky; Kathryn Tucker; John N. Waitumbi; Carter Diggs; Janet Wittes; Elissa Malkin; Amanda Leach; Lorraine Soisson; Jessica Milman; Lucas Otieno; Carolyn A. Holland; Mark E. Polhemus; Shon Remich; Christian F. Ockenhouse; Joe Cohen; W. Ripley Ballou; Samuel K. Martin; Evelina Angov; V. Ann Stewart; Jeffrey A. Lyon; D. Gray Heppner; Mark R. Withers

Objective The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccines safety, immunogenicity, and efficacy in African children. Methods A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12–47 months in general good health.Children were randomised in a 1∶1 fashion to receive either FMP1/AS02 (50 µg) or Rabipur® rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature ≥37.5°C with asexual parasitaemia of ≥50,000 parasites/µL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations. Results 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-142 antibody concentrations increased from1.3 µg/mL to 27.3 µg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: −26% to +28%; p-value = 0.7). Conclusions FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-142 vaccine development should focus on other formulations and antigen constructs. Trial Registration Clinicaltrials.gov NCT00223990


Journal of Immunology | 2004

Malaria Blood Stage Parasites Activate Human Plasmacytoid Dendritic Cells and Murine Dendritic Cells through a Toll-Like Receptor 9-Dependent Pathway

Sathit Pichyangkul; Kosol Yongvanitchit; Utaiwan Kum-Arb; Hiroaki Hemmi; Shizuo Akira; Arthur M. Krieg; D. Gray Heppner; V. Ann Stewart; Hitoshi Hasegawa; Sornchai Looareesuwan; G. Dennis Shanks; R. Scott Miller

A common feature of severe Plasmodium falciparum infection is the increased systemic release of proinflammatory cytokines that contributes to the pathogenesis of malaria. Using human blood, we found that blood stage schizonts or soluble schizont extracts activated plasmacytoid dendritic cells (PDCs) to up-regulate CD86 expression and produce IFN-α. IFN-α production was also detected in malaria-infected patients, but the levels of circulating PDCs were markedly reduced, possibly because of schizont-stimulated up-regulation of CCR7, which is critical for PDC migration. The schizont-stimulated PDCs elicited a poor T cell response, but promoted γδ T cell proliferation and IFN-γ production. The schizont immune stimulatory effects could be reproduced using murine DCs and required the Toll-like receptor 9 (TLR9)-MyD88 signaling pathway. Although the only known TLR9 ligand is CpG motifs in pathogen DNA, the activity of the soluble schizont extract was far greater than that of schizont DNA, and it was heat labile and precipitable with ammonium sulfate, unlike the activity of bacterial DNA. These results demonstrate that schizont extracts contain a novel and previously unknown ligand for TLR9 and suggest that the stimulatory effects of this ligand on PDCs may play a key role in immunoregulation and immunopathogenesis of human falciparum malaria.


PLOS ONE | 2009

Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A

Michele Spring; James F. Cummings; Christian F. Ockenhouse; Sheetij Dutta; Randall Reidler; Evelina Angov; Elke S. Bergmann-Leitner; V. Ann Stewart; Stacey Bittner; Laure Y. Juompan; Mark G. Kortepeter; Robin Nielsen; Urszula Krzych; Ev Tierney; Lisa A. Ware; Megan Dowler; Cornelus C. Hermsen; Robert W. Sauerwein; Sake J. de Vlas; Opokua Ofori-Anyinam; David E. Lanar; Jack Williams; Kent E. Kester; Kathryn Tucker; Meng Shi; Elissa Malkin; Carole A. Long; Carter Diggs; Lorraine Soisson; Marie-Claude Dubois

Background This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A Adjuvant Systems. Methodology/Principal Findings After a preliminary safety evaluation of low dose AMA-1/AS01B (10 µg/0.5 mL) in 5 adults, 30 malaria-naïve adults were randomly allocated to receive full dose (50 µg/0.5 mL) of AMA-1/AS01B (n = 15) or AMA-1/AS02A (n = 15), followed by a malaria challenge. All vaccinations were administered intramuscularly on a 0-, 1-, 2-month schedule. All volunteers experienced transient injection site erythema, swelling and pain. Two weeks post-third vaccination, anti-AMA-1 Geometric Mean Antibody Concentrations (GMCs) with 95% Confidence Intervals (CIs) were high: low dose AMA-1/AS01B 196 µg/mL (103–371 µg/mL), full dose AMA-1/AS01B 279 µg/mL (210–369 µg/mL) and full dose AMA-1/AS02A 216 µg/mL (169–276 µg/mL) with no significant difference among the 3 groups. The three vaccine formulations elicited equivalent functional antibody responses, as measured by growth inhibition assay (GIA), against homologous but not against heterologous (FVO) parasites as well as demonstrable interferon-gamma (IFN-γ) responses. To assess efficacy, volunteers were challenged with P. falciparum-infected mosquitoes, and all became parasitemic, with no significant difference in the prepatent period by either light microscopy or quantitative polymerase chain reaction (qPCR). However, a small but significant reduction of parasitemia in the AMA-1/AS02A group was seen with a statistical model employing qPCR measurements. Significance All three vaccine formulations were found to be safe and highly immunogenic. These immune responses did not translate into significant vaccine efficacy in malaria-naïve adults employing a primary sporozoite challenge model, but encouragingly, estimation of parasite growth rates from qPCR data may suggest a partial biological effect of the vaccine. Further evaluation of the immunogenicity and efficacy of the AMA-1/AS02A formulation is ongoing in a malaria-experienced pediatric population in Mali. Trial Registration www.clinicaltrials.gov NCT00385047


Infection and Immunity | 2007

Priming with an Adenovirus 35-Circumsporozoite Protein (CS) Vaccine followed by RTS,S/AS01B Boosting Significantly Improves Immunogenicity to Plasmodium falciparum CS Compared to That with Either Malaria Vaccine Alone

V. Ann Stewart; Shannon McGrath; Patrice M. Dubois; Maria G. Pau; Pascal Mettens; Joseph Shott; Michelle Cobb; J. Robert Burge; David Larson; Lisa A. Ware; Marie-Ange Demoitié; Gerrit Jan Weverling; Babak Bayat; Jerome Custers; Marie-Claude Dubois; Joe Cohen; Jaap Goudsmit; D. Gray Heppner

ABSTRACT The RTS,S/AS02A protein-based vaccine consistently demonstrates significant protection against infection with Plasmodium falciparum malaria and also against clinical malaria and severe disease in children in areas of endemicity. Here we demonstrate with rhesus macaques that priming with a replication-defective human adenovirus serotype 35 (Ad35) vector encoding circumsporozoite protein (CS) (Ad35.CS), followed by boosting with RTS,S in an improved MPL- and QS21-based adjuvant formulation, AS01B, maintains antibody responses and dramatically increases levels of T cells producing gamma interferon and other Th1 cytokines in response to CS peptides. The increased T-cell responses induced by the combination of Ad35.CS and RTS,S/AS01B are sustained for at least 6 months postvaccination and may translate to improved and more durable protection against P. falciparum infection in humans.


PLOS ONE | 2008

Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: results of a phase 1 randomized controlled trial.

Mahamadou A. Thera; Ogobara K. Doumbo; Drissa Coulibaly; Dapa A. Diallo; Abdoulaye K. Kone; Ando Guindo; Karim Traore; Alassane Dicko; Issaka Sagara; Mahamadou S Sissoko; Mounirou Baby; Mady Sissoko; Issa Diarra; Amadou Niangaly; Amagana Dolo; Modibo Daou; Sory I. Diawara; D. Gray Heppner; V. Ann Stewart; Evelina Angov; Elke S. Bergmann-Leitner; David E. Lanar; Sheetij Dutta; Lorraine Soisson; Carter Diggs; Amanda Leach; Alex Owusu; Marie-Claude Dubois; Joe Cohen; Jason N. Nixon

Background The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria. Methodology/Principal Findings A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18–55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 µg/AS02A 0.25 mL or FMP2.1 50 µg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively. Conclusion/Significance The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site. Trial Registration ClinicalTrials.gov NCT00308061


Vaccine | 2008

Improved T cell responses to Plasmodium falciparum circumsporozoite protein in mice and monkeys induced by a novel formulation of RTS,S vaccine antigen.

Pascal Mettens; Patrice M. Dubois; Marie-Ange Demoitié; Babak Bayat; Marie-Noëlle Donner; Patricia Bourguignon; V. Ann Stewart; D. Gray Heppner; Nathalie Garçon; Joe Cohen

Protection against Plasmodium falciparum sporozoite infection can be achieved by vaccination with the recombinant circumsporozoite protein-based vaccine RTS,S formulated with the AS02A Adjuvant System. Since this protection is only partial and wanes over time, we have developed a new RTS,S-based vaccine adjuvanted with AS01B. RTS,S/AS01B-induced high specific antibody titers and increased the frequency of mouse CD4(+) and CD8(+) T cells expressing IFN-gamma, and of monkey CD4(+) T cells expressing IL-2 and/or IFN-gamma and/or TNF-alpha upon stimulation with vaccine antigens. Our data provides clear evidence that combining RTS,S antigen with a potent adjuvant induces strong humoral and cellular responses in vivo.


PLOS Clinical Trials | 2006

Safety and Reactogenicity of an MSP-1 Malaria Vaccine Candidate: A Randomized Phase Ib Dose-Escalation Trial in Kenyan Children

Mark R. Withers; Denise McKinney; Bernhards Ogutu; John N. Waitumbi; Jessica Milman; Odika J. Apollo; Otieno G Allen; Kathryn Tucker; Lorraine Soisson; Carter Diggs; Amanda Leach; Janet Wittes; Filip Dubovsky; V. Ann Stewart; Shon Remich; Joe Cohen; W. Ripley Ballou; Carolyn A. Holland; Jeffrey A. Lyon; Evelina Angov; José A. Stoute; Samuel K. Martin; D. Gray Heppner

Objective: Our aim was to evaluate the safety, reactogenicity, and immunogenicity of an investigational malaria vaccine. Design: This was an age-stratified phase Ib, double-blind, randomized, controlled, dose-escalation trial. Children were recruited into one of three cohorts (dosage groups) and randomized in 2:1 fashion to receive either the test product or a comparator. Setting: The study was conducted in a rural population in Kombewa Division, western Kenya. Participants: Subjects were 135 children, aged 12–47 mo. Interventions: Subjects received 10, 25, or 50 μg of falciparum malaria protein 1 (FMP1) formulated in 100, 250, and 500 μL, respectively, of AS02A, or they received a comparator (Imovax® rabies vaccine). Outcome Measures: We performed safety and reactogenicity parameters and assessment of adverse events during solicited (7 d) and unsolicited (30 d) periods after each vaccination. Serious adverse events were monitored for 6 mo after the last vaccination. Results: Both vaccines were safe and well tolerated. FMP1/AS02A recipients experienced significantly more pain and injection-site swelling with a dose-effect relationship. Systemic reactogenicity was low at all dose levels. Hemoglobin levels remained stable and similar across arms. Baseline geometric mean titers were comparable in all groups. Anti-FMP1 antibody titers increased in a dose-dependent manner in subjects receiving FMP1/AS02A; no increase in anti-FMP1 titers occurred in subjects who received the comparator. By study end, subjects who received either 25 or 50 μg of FMP1 had similar antibody levels, which remained significantly higher than that of those who received the comparator or 10 μg of FMP1. A longitudinal mixed effects model showed a statistically significant effect of dosage level on immune response (F3,1047 = 10.78, or F3, 995 = 11.22, p < 0.001); however, the comparison of 25 μg and 50 μg recipients indicated no significant difference (F1,1047 = 0.05; p = 0.82). Conclusions: The FMP1/AS02A vaccine was safe and immunogenic in malaria-exposed 12- to 47-mo-old children and the magnitude of immune response of the 25 and 50 μg doses was superior to that of the 10 μg dose.


Vaccine | 2008

Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-γ and antibody responses in mice☆

Joseph Shott; Shannon McGrath; Maria Grazia Pau; Jerome Custers; Olga Ophorst; Marie-Ange Demoitié; Marie-Claude Dubois; Jack Komisar; Michelle Cobb; Kent E. Kester; Patrice M. Dubois; Joe Cohen; Jaap Goudsmit; D. Gray Heppner; V. Ann Stewart

Falciparum malaria vaccine candidates have been developed using recombinant, replication-deficient serotype 5 and 35 adenoviruses (Ad5, Ad35) encoding the Plasmodium falciparum circumsporozoite surface protein (CSP) (Ad5.CS, Ad35.CS) (Crucell Holland BV, Leiden, The Netherlands). To evaluate the immunogenicity of these constructs, BALB/cJ mice were immunized twice with either Ad5.CS, Ad35.CS, empty Ad5-vector (eAd5), empty Ad35 vector (eAd35), or saline. Another group received the CSP-based RTS,S malaria vaccine formulated in the proprietary Adjuvant System AS01B (GlaxoSmithKline Biologicals, Rixensart, Belgium). Here we report that Ad5.CS, Ad35.CS, and RTS,S/AS01B, elicited both cellular and serologic CSP antigen-specific responses in mice. These adenoviral vectors induce strong malaria-specific immunity and warrant further evaluation.


Journal of Immunological Methods | 2001

Isolation and characterization of rhesus blood dendritic cells using flow cytometry.

Sathit Pichyangkul; Panita Saengkrai; Kosol Yongvanitchit; Chantana Limsomwong; Montip Gettayacamin; Douglas S. Walsh; V. Ann Stewart; W. Ripley Ballou; D. Gray Heppner

Recognition of dendritic cells (DCs) as initiators and modulators of immune responses and growing use of rhesus monkeys for the preclinical optimization of vaccine formulations prompted characterization of the phenotype and function of isolated rhesus peripheral blood DCs. We developed a flow cytometric method to directly identify and isolate DCs from rhesus peripheral blood whereby a T cell depleted population negative for CD3, CD14, CD16 and CD20 but positive for CD83 yielded a cell population with surface markers, morphology, and a cytokine profile similar to human myeloid DCs. Rhesus blood DCs were more effective than monocytes and B cells in mixed lymphocyte reactions and in the presentation of recombinant malaria blood stage antigen MSP-1((42)) to autologous T cells. The ability to isolate rhesus blood DC from peripheral blood should be a useful tool for immunological investigations.

Collaboration


Dive into the V. Ann Stewart's collaboration.

Top Co-Authors

Avatar

D. Gray Heppner

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kent E. Kester

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

James F. Cummings

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Evelina Angov

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Lorraine Soisson

United States Agency for International Development

View shared research outputs
Top Co-Authors

Avatar

Carter Diggs

United States Agency for International Development

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian F. Ockenhouse

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge