Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Bogdan Neculaes is active.

Publication


Featured researches published by V. Bogdan Neculaes.


Journal of Applied Physics | 2013

Cell membrane thermal gradients induced by electromagnetic fields

Allen Lawrence Garner; Maxim Deminsky; V. Bogdan Neculaes; V. Chashihin; Andrey A. Knizhnik; B. V. Potapkin

While electromagnetic fields induce structural changes in cell membranes, particularly electroporation, much remains to be understood about membrane level temperature gradients. For instance, microwaves induce cell membrane temperature gradients (∇T) and bioeffects with little bulk temperature change. Recent calculations suggest that nanosecond pulsed electric fields (nsPEFs) may also induce such gradients that may additionally impact the electroporation threshold. Here, we analytically and numerically calculate the induced ∇T as a function of pulse duration and pulse repetition rate. We relate ∇T to the thermally induced cell membrane electric field (Em) by assuming the membrane behaves as a thermoelectric such that Em ∼ ∇T. Focusing initially on applying nsPEFs to a uniform membrane, we show that reducing pulse duration and increasing pulse repetition rate (or using higher frequency for alternating current (AC) fields) maximizes the magnitude and duration of ∇T and, concomitantly, Em. The maximum ∇T ini...


PLOS ONE | 2016

Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma

Anja J. Gerrits; Allen Lawrence Garner; Andrew Soliz Torres; Antonio Caiafa; Christine Morton; Michelle A. Berny-Lang; Sabrina L. Carmichael; V. Bogdan Neculaes; Alan D. Michelson

Background Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. Aims To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. Methods PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. Results PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet-derived microparticles, platelets, and platelet aggregates whereas SMHEF pulses primarily resulted in platelet-derived microparticles. Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated PRP, but not significantly different from that produced by thrombin activation. Higher levels of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with all three activating conditions. Cell proliferation was significantly increased by releasates of both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone. Conclusions PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential platelet-derived microparticle production and activation of platelet surface procoagulant markers while inducing similar release of growth factors and similar capacity to induce cell proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses, resulting in less platelet microparticle generation but with overall activation levels similar to that obtained with thrombin. These results suggest that PEF provides the means to alter, in a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound healing and clinical outcomes.


Journal of Applied Physics | 2013

Experimental and numerical studies of microwave power redistribution during thermal runaway

Mahesh Chandran; V. Bogdan Neculaes; Drew Brisco; Sarah Katz; Jeffrey Jon Schoonover; Laurent Cretegny

Plasma-assisted heating of Al2O3 is used to study power redistribution during thermal runaway when two samples are simultaneously heated in a microwave cavity. It is observed that thermal runaway in one of the samples completely suppresses the power availability to the other, demonstrating that thermal runaway in one region of the cavity acts as a “sink” for microwave power. Similar effects were observed during localized thermal runaway in a spatially extended single sample. Experimental trends were explored numerically by calculating the temperature evolution T (t) when one of the samples undergoes thermal runaway. Numerical investigation qualitatively captures the essential feature that thermal instability in one sample rapidly decreases the temperature of the second sample in agreement with the experimental observation. Experimental and numerical results as well as practical implications are discussed in the context of microwave processing of materials.


Journal of Applied Physics | 2012

Extending membrane pore lifetime with AC fields: A modeling study

Allen Lawrence Garner; V. Bogdan Neculaes

AC (sinusoidal) fields with frequencies from kilohertz to gigahertz have been used for gene delivery. To understand the impact of AC fields on electroporation dynamics, we couple a nondimensionalized Smoluchowski equation to an exact representation of the cell membrane voltage obtained solving the Laplace equation. The slope of the pore energy function, dφ/dr, with respect to pore radius is critical in predicting pore dynamics in AC fields because it can vary from positive, inducing pore shrinkage, to negative, driving pore growth. Specifically, the net sign of the integral of dφ/dr over time determines whether the average pore size grows (negative), shrinks (positive), or oscillates (zero) indefinitely about a steady-state radius, rss. A simple analytic relationship predicting the amplitude of the membrane voltage necessary for this behavior agrees well with simulation for frequencies from 500 kHz to 5 MHz for rss   10 nm), dφ/dr oscillates about a negative value, sugge...


PLOS ONE | 2017

Design, characterization and experimental validation of a compact, flexible pulsed power architecture for ex vivo platelet activation

Allen Lawrence Garner; Antonio Caiafa; Yan Jiang; Steve Klopman; Christine Morton; Andrew Soliz Torres; Amanda M. Loveless; V. Bogdan Neculaes; Barbora Piknova

Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds) to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation.


Biochemistry and biophysics reports | 2016

Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

Allen L. Garner; V. Bogdan Neculaes; Maxim Deminsky; Dmitry V. Dylov; Chulmin Joo; Evelina Roxana Loghin; Siavash Yazdanfar; Kenneth Roger Conway

Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.


ieee international power modulator and high voltage conference | 2014

Compact solid state pulsed power architecture for biomedical workflows: Modular topology, programmable pulse output and experimental validation on Ex vivo platelet activation

Antonio Caiafa; V. Bogdan Neculaes; Allen L. Garner; Yan Jiang; Steve Klopman; Andrew Soliz Torres; Nicole LaPlante

We describe a system based on a Marx generator approach using all solid state components in a modular topology that enables higher voltages by simply adding more modules. This novel system maximizes parameter flexibility, including electric pulse amplitude, duration and repetition rate. Example of pulses generated by this all solid state generator of ~20 kV/cm, ~ 600 ns pulse width, and more than 300 A per pulse are shown to activate platelets by stimulating human PRP (platelet rich plasma) in a 2 mm cuvette. Two growth factors released during platelet activation were identical whether nsPEFs (nanosecond pulsed electric fields) or bovine thrombin, the standard clinical platelet activator, was used. Future in vivo studies will assess the effectiveness of nsPEFs activated platelet gels compared to those activated by bovine thrombin.


Physics of Plasmas | 2014

Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture.

V. Bogdan Neculaes; Yun Zou; Peter Andras Zavodszky; Louis Paul Inzinna; Xi Zhang; Kenneth Roger Conway; Antonio Caiafa; Kristopher John Frutschy; William Waters; Bruno De Man

A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient.


Proceedings of SPIE | 2014

X-ray pulsing methods for reduced-dose computed tomography in PET/CT attenuation correction

Uwe Wiedmann; V. Bogdan Neculaes; Daniel David Harrison; Evren Asma; Paul E. Kinahan; Bruno De Man

The image quality needed for CT-based attenuation correction (CTAC) is significantly lower than what is used currently for diagnostic CT imaging. Consequently, the X-ray dose required for sufficient image quality with CTAC is relatively small, potentially smaller than the lowest X-ray dose clinical CT scanners can provide. Operating modes have been proposed in which the X-rays are periodically turned on and off during the scan in order to reduce X-ray dose. This study reviews the different methods by which X-rays can be modulated in a CT scanner, and assesses their adequacy for lowdose acquisitions as required for CTAC. Calculations and experimental data are provided to exemplify selected X-ray pulsing scenarios. Our analysis shows that low-dose pulsing is possible but challenging with clinically available CT tubes. Alternative X-ray tube designs would lift this restriction.


PLOS ONE | 2018

Tunable activation of therapeutic platelet-rich plasma by pulse electric field: Differential effects on clot formation, growth factor release, and platelet morphology

Anja J. Gerrits; V. Bogdan Neculaes; Thomas Gremmel; Andrew Soliz Torres; Anthony Caiafa; Sabrina L. Carmichael; Alan D. Michelson

Background Activation of platelet-rich plasma (PRP) by pulse electric field (PEF) releases growth factors which promote wound healing (e.g., PDGF, VEGF for granulation, EGF for epithelialization). Aims To determine after PEF activation of therapeutic PRP: 1) platelet gel strength; 2) profile of released growth factors; 3) alpha- and T-granule release; 4) platelet morphology. Methods Concentrated normal donor PRP was activated by 5 μsec (long) monopolar pulse, ~4000 V/cm (PEF A) or 150 nsec (short) bipolar pulse, ~3000 V/cm (PEF B) in the presence of 2.5 mM (low) or 20 mM (high) added CaCl2. Clot formation was evaluated by thromboelastography (TEG). Surface exposure of alpha granule (P-selectin) and T-granule (TLR9 and protein disulfide isomerase [PDI]) markers were assessed by flow cytometry. Factors in supernatants of activated PRP were measured by ELISA. Platelet morphology was evaluated by transmission electron microscopy (TEM). Results Time to initial clot formation was shorter with thrombin (<1 min) than with PEF A and B (4.4–8.7 min) but clot strength (elastic modulus, derived from TEG maximum amplitude) was greater with PEF B than with either thrombin or PEF A (p<0.05). Supernatants of PRP activated with PEF A had higher EGF levels than supernatants from all other conditions. In contrast, levels of PF4, PDGF, and VEGF in supernatants were not significantly different after PEF A, PEF B, and thrombin activation. T-granule markers (TLR9 and PDI) were higher after thrombin than after PEF A or B with low or high CaCl2. By TEM, platelets in PEF-treated samples retained a subset of granules suggesting regulated granule release. Conclusion Pulse length and polarity can be modulated to produce therapeutic platelet gels as strong or stronger than those produced by thrombin, and this is tunable to produce growth factor profiles enhanced in specific factors important for different stages of wound healing.

Collaboration


Dive into the V. Bogdan Neculaes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge