V. Chohan
CERN
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Chohan.
Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167) | 1997
S. Baird; D. Berlin; J. Boillot; J. Bosser; M. Brouet; J. Buttkus; F. Caspers; V. Chohan; D. Dekkers; T Eriksson; R. Garoby; R. Giannini; Oswald Grobner; J. Gruber; J.Y. Hemery; Heribert Koziol; R. Maccaferri; S. Maury; C Metzger; K. Metzmacher; D. Möhl; H. Mulder; M. Paoluzzi; F. Pedersen; J P Riunaud; Ch. Serre; Daniel Jean Simon; G Tranquille; Jan Willem Nicolaas Tuyn; A. van der Schueren
A simplified scheme for the provision of antiprotons at 100 MeV/c based on fast extraction is described. The scheme uses the existing p~ production target area and the modified Antiproton Collector Ring in their current location. The physics programme is largely based on capturing and storing antiprotons in Penning traps for the production and spectroscopy of antihydrogen. The machine modifications necessary to deliver batches of 1/spl times/10/sup 7/ p~/min at 100 MeV/c are described. Details of the machine layout and the experimental area in the existing AAC Hall are given.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1997
S. Baird; D. Berlin; J. Boillot; J. Bosser; M. Brouet; J. Buttkus; F. Caspers; V. Chohan; D. Dekkers; T Eriksson; R. Garoby; R. Giannini; Oswald Grobner; J. Gruber; J.Y. Hemery; Heribert Koziol; R. Maccaferri; S. Maury; C Metzger; K. Metzmacher; D. Möhl; H. Mulder; M. Paoluzzi; F Pedersen; J P Riunaud; Christian Serre; Daniel Jean Simon; G Tranquille; Jan Willem Nicolaas Tuyn; B. Williams
Abstract In view of a possible future programme of physics with low-energy antiprotons, a simplified scheme for the provision of antiprotons at 100 MeV/ c has been studied. It uses the present target area and the modified Antiproton Collector (AC) in its present location. In this report the modifications and the operation are discussed.
Nuclear Physics B - Proceedings Supplements | 1997
S. Baird; D. Berlin; J. Boillot; J. Bosser; M. Brouet; J. Buttkus; F. Caspers; V. Chohan; D. Dekkers; T Eriksson; R. Garoby; R. Giannini; Oswald Grobner; J. Gruber; J.Y. Hemery; Heribert Koziol; R. Maccaferri; S. Maury; C Metzger; K. Metzmacher; D. Möhl; H. Mulder; M. Paoluzzi; F. Pedersen; J P Riunaud; Ch. Serre; Daniel Jean Simon; G. Tranquille; Jan Willem Nicolaas Tuyn; B. Williams
A simplified scheme for the provision of antiprotons at 100 MeV/c in fast extraction is described. The scheme uses the existing p production target area and the modified Antiproton Collector Ring in their current location. Some modifications necessary to deliver batches of 1 × 10 7 antiprotons every minute at 100 MeV/c are described, details of the machine layout and the experimental area in the existing AAC Hall are given.
Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167) | 1997
S. Baird; J. Boillot; F. Caspers; M. Chanel; V. Chohan; T Eriksson; R. Ley; S. Maury; C Metzger; D. Möhl; H. Mulder; F. Pedersen; G. Tranquille
This paper reviews the recent performance of the AAC and LEAR. Activities on the AAC include the successful exploitation of a magnetic horn as an antiproton collector lens and an energy-saving mode of operation, which has been possible since 1992, when LEAR became the only client of the AAC. LEAR worked in its full momentum range between 100 MeV/c and 2 GeV/c, with performance (intensities, ejection modes and spill length) exceeding the design specifications. Improvements are described, which contributed to the quality of the beam delivered to experiments. The reliability and availability of the antiproton machines are also discussed.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1990
V. Chohan; S. van der Meer
Abstract The CERN antiproton source is comprised of two concentric accelerators and a production target zone. The Collector is a large-acceptance ring which acts as a buffer between the target and the Accumulator ring where the antiprotons are stored before being extracted. From the early days of the Accumulator (AA), various automatic procedures and tools have been introduced to assist in machine studies and diagnostic and to facilitate day-to-day operations for antiproton production and transfers to the CERN Collider. With the upgrade of the source in 1987 by the addition of the Collector ring (AC), the complexity of the source has at least doubled. New facilities have been added and the existing ones improved. This paper describes some of the applications, techniques and tools used for beam diagnostics, setting-up and routine operation of ththe antiproton source complex at CERN.
Archive | 2009
Oliver Bruning; V. Chohan; S. Chattopadhyay
The LHC at CERN has completed its construction in summer 2008. It is just entering into its commissioning phase in preparation for collider operation for science in 2009. The first beams were already observed in an inaugural commissioning run on September 10, 2008. An inaugural ceremony for the collider organised on October 21, 2008 celebrated the achievement of bringing the LHC to reality by an international team of scientists with support from governments of nations around the globe contributing to the programme. As we anticipate the non-trivial task of a careful, detailed and prolonged commissioning of the collider, it is time to take stock of the achievements to date and the future potential of the LHC, highlighting contributions of our colleagues from India in particular and the sociology of global collaboration.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1990
V. Chohan
Abstract The upgrade of the CERN antiproton source, meant to gain an order of magnitude in antiproton flux, required the construction of an additional ring to complement the existing antiproton accumulator (AA) and an entire rebuild of the target zone. The AA also needed major modifications to handle the increased flux and perform purely as an accumulator, preceded by collection in the collector ring (AC). The upgrade, known as the ACOL (antiproton collector) project, was approved under strict time and budgetary constraints and the existing AA control system, based on the Proton Synchrotron (PS) Divisional norms of CAMAC and Norsk-Data computers, had to be extended in the light of this. The limited (9 months) installation period for the whole upgrade meant that substantial preparatory and planning activities had to be carried out during the normal running of the AA. Advantage was taken of the upgrade to improve and consolidate the AA. Some aspects of the control system related to this upgrade are discussed together with the integration of new applications and instrumentation. The overall machine installation and running-in was carried out within the defined milestones and the project has now achieved the physics design goals.
arXiv: History and Philosophy of Physics | 2012
V. Chohan
Simon van der Meer was a brilliant scientist and a true giant in the field of accelerators. His seminal contributions to accelerator science are essential to this day in our quest to satisfy the demands of modern particle physics. Whether we are talking of long-baseline neutrino physics or antiproton-proton physics at CERN and Fermilab, or proton-proton physics at the LHC, his techniques and inventions have been a vital and necessary part of modern-day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics in 1984. His less well-known contributions spanned a whole range of subjects in accelerator science from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs, and controls.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1986
V. Chohan
Abstract The use of function minimisation techniques for optimum design according to given performance criteria is well-known. Given a well-defined criterion and a means of evaluating it precisely, the problem reduces to choosing the best optimisation procedure to suit the problem. Direct search techniques which do not generally rely on the computation of derivatives of the error function are ideal for on-line improvement of the global accelerator performance since the error function is not known analytically, e.g. the number of antiprotons stored in the antiproton accumulator ring on a pulse-to-pulse basis as a function of all the antiproton production and stochastic cooling system parameters. The user-friendliness of the NODAL interpreter at the man-machine interaction level, its capability to easily control and manipulate equipment as well as its capability to synchronise with respect to time events on a cycle-to-cycle basis makes it suitable for an on-line accelerator performance optimisation type of application. A modular procedure, based on the Simplex technique [1] has been implemented recently which allows function minimisation depending on the error function definition module. This enables an easy manipulation of variables and synchronization with machine events. For the antiproton accumulator (AA), while the circulating beam current transformer lacks the resolution to measure the exact number of antiprotons stored on a pulse-to-pulse basis, there are a large number of electrons produced in the production process [2] and a signal emanating from these can be adapted to provide the performance criterion and appropriate parameters used as function variables in the optimisation process. First trials based on optimisation of injection of antiprotons in the AA look promising, but further work is necessary in the direct definition of the error functions.
Given at | 1990
V. Chohan; F. Pedersen; D.J. Williams; Simon van der Meer