V. D. Yagodovskii
Peoples' Friendship University of Russia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. D. Yagodovskii.
Russian Journal of Physical Chemistry A | 2009
N. A. Galimova; Z. V. Pskhu; A. V. Naumkin; I. O. Volkov; T. V. Yagodovskaya; V. D. Yagodovskii
The influence of plasma chemical treatments on the catalytic activity of 0.64 wt % Pt/SiO2 and 1.0 wt % Pt/SiO2 platinum catalysts in the dehydrogenation of cyclohexane was studied. The state of the surface of the catalysts was examined using X-ray photoelectron spectroscopy. Temperature hysteresis caused by the formation of active carbon was observed in flow experiments. It was shown that the reaction on the initial catalysts occurred on neutral and positively charged Pt particles, and that the active centers contained carbon. After catalyst treatment with a high-frequency plasma in H2, its activity increased by many times because of the formation of a large number of low-activity centers on positively charged platinum particles also containing carbon. Glow discharge plasma in Ar sharply decreased catalytic activity, and the reaction then predominantly occurred on centers localized on neutral Pt particles, whereas centers on positive Pt particles were blocked. The state of the substrate (silica gel) did not change under the action of plasmas of both kinds.
Russian Journal of Physical Chemistry A | 2012
E. A. Platonov; A. V. Naumkin; K. I. Maslakov; V. D. Yagodovskii
The effect of a cerium additive on the catalytic activity of a 2 wt % Ni/SiO2 catalyst is studied. It found that under both flow and static conditions the activity of (2 wt % Ni + 0.2 wt % Ce)/SiO2 catalyst is higher than that of the original sample; the increase in activity results from a sharp increase in the number of active sites. A change in the composition of the surface layer of the catalysts is analyzed by X-ray photoelectron spectroscopy. It was found that the fraction of nickel decreases and the fraction of carbon increases in cerium-containing catalyst. An explanation of the change in the elemental composition of the catalytic active sites of a nickel catalyst in the presence of cerium is proposed on the basis of XPS data and previous quantum chemical calculations.
Russian Journal of Physical Chemistry A | 2010
N. A. Galimova; Z. V. Pskhu; A. V. Naumkin; I. O. Volkov; T. V. Yagodovskaya; E. A. Platonov; V. D. Yagodovskii
The reaction of the dehydrogenation of cyclohexane on a copper-platinum catalyst supported by silica gel (1 wt % Pt + 0.15 wt % Cu)/SiO2 was studied. The state of the catalyst surface was investigated using X-ray photoelectron spectroscopy. It was established that under both flow and static conditions, the activity of the copper-platinum catalyst is higher than the activity of a catalyst containing 1 wt % Pt/SiO2. The rise in activity as a result of the introduction of copper, due to a decrease in the activation energy, is explained by an increase in the fraction of carbon in the composition of active centers localized on particles of neutral (Ptm0) and positively charged (Ptn+δ) platinum, and by the formation of centers with increased activity as a result of the adsorption of Cu+δ on particles of Ptm0. It was demonstrated that treating the copper-platinum catalyst with the plasma of a glow discharge in argon and oxygen increases its activity, while treatment in high-frequency H2 plasma reduces it. The indicated changes in the activity are associated with the alteration of the activation energies and the number of active centers, revealed by X-ray photoelectron spectroscopy, that depend on changes in the catalyst surface composition.
Russian Journal of Physical Chemistry A | 2012
E. A. Platonov; N. A. Galimova; Z. V. Pskhu; V. D. Yagodovskii
The influence of plasmochemical treatments of the 5 wt % Cu/SiO2 catalyst and cerium additives on the activity of the catalyst in isopropanol dehydrogenation was studied. After the catalyst was treated with high-frequency plasma in H2 under the flow conditions, the conversion of alcohol increased. The reaction kinetics was studied under static conditions. The rate constant increased 1430-fold after the introduction of an optimum dose of Ce and treatment in Ar, O2, and H2 plasma and 550-fold after treatment with high-frequency plasma in H2. The experimental activation energy increased in all instances; the activity grew because of the increase in the number of active centers. The promoting action of cerium was explained by the positive charge of the Ce+α adatom, which initiated growth of the surface electron density; the influence of plasmochemical treatments was explained by the change in the number of structural defects and their character. Possible stepwise reaction schemes were considered based on ab initio quantum-chemical calculations.
Russian Journal of Physical Chemistry A | 2012
E. A. Platonov; N. N. Lobanov; N. A. Galimova; I. A. Protasova; V. D. Yagodovskii
The effect of the treatment of the 5 wt % Cu/SiO2 (I) and (5 wt % Cu + 0.5 wt % Ce)/SiO2 (II) catalysts with glow discharge plasma in O2, H2, and Ar on their structural characteristics was studied by X-ray phase analysis; the influence of cerium additions and plasmochemical treatments on the catalyst activity in isopropanol dehydrogenation was also investigated. Under the plasmochemical treatment, the diameters of Cu particles in catalyst I nearly doubled and microstresses in the metal particles also changed. Catalyst II was X-ray amorphous both before and after plasmochemical treatments. The activity of I after plasmochemical treatment increased because of the increase in the number of centers and changes in their composition. Growth of the activity of I compared with the activity of II was explained by the formation of new catalytic centers due to positive charging of the Ce+α adatom on the surface of the copper particle.
Russian Journal of Physical Chemistry A | 2010
A. I. Pylinina; I. I. Mikhalenko; T. V. Yagodovskaya; V. D. Yagodovskii
The reactivity and desorption of butanol-2 adsorbed on Li3Fe2(PO4)3 not subjected and subjected to treatment in a glow discharge hydrogen plasma were studied under flow conditions with a gas chromatographic analysis of products. X-ray photoelectron spectroscopy data showed that the number of phosphate groups on the surface of the phosphate was two times larger than the stoichiometric number and increased after plasma chemical treatment. The strength of butanol-phosphate bonds also increased, and the selectivity of alcohol decomposition with the formation of an olefin (dehydration) and ketone (dehydrogenation) changed. After plasma treatment, dehydrogenation centers were deactivated. The selectivities of alcohol transformations in the adsorbed state and under vapor phase conditions were different. Ketone was formed from adsorbed alcohol because the activation energies of dehydrogenation were equal for the two reaction variants.
Russian Journal of Physical Chemistry A | 2014
E. A. Platonov; A. V. Naumkin; I. O. Volkov; N. N. Lobanov; I. A. Protasova; T. V. Yagodovskaya; V. D. Yagodovskii
The effects of plasmochemical processing and of Ce, K, and Hf additives on the rate of dehydrogenation for isopropyl alcohol on a 5 wt % Co/SiO2 catalyst is studied under static and flow conditions. Glow discharge plasma in O2 and Ar and high-frequency electrodeless plasma in H2 (HF-H2) are used. Except for one sample containing Hf, an increase in catalytic activity is observed due to the formation of new active centers. The change in the composition of the initial catalyst’s surface after treatment with Ce and with oxygen, argon, and HF-H2 plasmas is determined by means of X-ray photoelectron spectroscopy. The change in the size and shape of Co particles after treating the catalyst with HF-H2 plasma and Ce is determined via X-ray phase analysis. It is suggested that the new catalytic centers formed after treatment in O2 and Ar plasma contain carbon atoms with C1s bond energies of 282.1 eV; after treatment with HF-H2 plasma, active centers contain hydrogen and carbon atoms with C1s bond energies of 282.5 eV; with cerium, the C1s bond energy is 297.7 eV.
Russian Journal of Physical Chemistry A | 2015
V. D. Yagodovskii
A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of θ ~ 0.1–0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and NiО. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Cо) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.
Russian Journal of Physical Chemistry A | 2014
E. A. Platonov; I. G. Bratchikova; A. I. Pylinina; V. D. Yagodovskii
Adsorption isotherms of isopropanol are obtained in the temperature range of 243 to 303 K on the initial surface of nickel oxide after its treatment in high-frequency plasma in Ar and glow-discharge plasma in O2. It is found that such treatment lower the isosteric heat and differential entropy of reversible adsorption, along with the general acidity of the oxide’s surface. At low degrees of filling, isotherms are described by the equation of induced adsorption. It is established that adsorbed molecules of isopropanol take negatively charged and two positively charged forms. Lewis acidic centers of various strengths can serve as adsorption centers in addition to centers of other types.
Russian Journal of Physical Chemistry A | 2017
E. A. Platonov; I. G. Bratchikova; V. D. Yagodovskii; Z. V. Murga
The effect plasma–chemical treatments of 5 wt % Со/SiO2 catalyst have on its activity in the carbonic acid conversion of methane in the interval of 700 to 900°C is studied. A plasma glow discharge in oxygen and argon was used along with high-frequency plasma in hydrogen for preliminary treatment of the catalyst. A multiple increase in СН4 and СО2 conversion and a 30–50 K drop in the temperature of the onset of the reaction are observed after plasma–chemical treatments. The strongest increase in activity is measured after the catalyst is treated with oxygen plasma. X-ray photoelectron spectroscopy is used to determine the change in the composition of the catalyst’s surface after it is treated with plasma, indicating that active forms of carbon atoms can be included in new active centers.