Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. De Caprio is active.

Publication


Featured researches published by V. De Caprio.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system

A. Zurlo; A. Vigan; R. Galicher; A.-L. Maire; D. Mesa; R. Gratton; G. Chauvin; M. Kasper; Claire Moutou; M. Bonnefoy; S. Desidera; Lyu Abe; Daniel Apai; Andrea Baruffolo; Pierre Baudoz; J. Baudrand; J.-L. Beuzit; P. Blancard; A. Boccaletti; F. Cantalloube; M. Carle; E. Cascone; Julien Charton; R. U. Claudi; A. Costille; V. De Caprio; Kjetil Dohlen; C. Dominik; D. Fantinel; Philippe Feautrier

Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July–December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0–2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94–1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3–7 MJup . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm.


Proceedings of SPIE | 2006

The REMIR cryogenics restyling

Fabrizio Vitali; Jean-Louis Lizon; Gerardo Ihle; Matteo Accardo; L. Gonzales; Peter Sinclaire; J. Pineda; A. Pizarro; Javier Valenzuela; Paolo Conconi; Francesco D'Alessio; V. De Caprio; Marco Riva; Emilio Molinari; Guido Chincarini; Filippo Maria Zerbi; Marcello Rodono; S. Covino; Vincenzo Testa; G. Tosti; L. A. Antonelli; G. Malaspina; Eliana Palazzi

REMIR is the NIR camera of the automatic REM (Rapid Eye Mount) Telescope located at ESO-La Silla Observatory (Chile) and dedicated to monitor the afterglow of Gamma Ray Burst events. During the last two years, the REMIR camera went through a series of cryogenics problems, due to the bad functioning of the Leybold cryocooler Polar SC7. Since we were unable to reach with Leybold for a diagnosis and a solution for such failures, we were forced to change drastically the cryogenics of REMIR, going from cryocooler to LN2: we adopted an ad-hoc modified Continuous Flow Cryostat, a cryogenics system developed by ESO and extensively used in ESO instrumentation, which main characteristic is that the LN2 vessel is separated from the cryostat, allowing a greater LN2 tank, then really improving the hold time. In this paper we report the details and results of this operation.


Optical Design and Engineering IV | 2011

Optical Design and Test of the BIGRE Based IFS of SPHERE

R. U. Claudi; E. Giro; U. Anselmi; D. Mesa; J. Antichi; R. Gratton; S. Desidera; V. De Caprio; L. Lessio; S. Scuderi; P. Bruno; D. Fantinel; Bernardo Salasnich; E. Cascone; J.-L. Beuzit; Kjetil Dohlen; F. Wildi; Pascal Puget; M. Kasper; Norbert Hubin

During the last months IFS, is the Integral Field Spectrograph for SPHERE, devoted to the search of exoplanets has been integrated in the clean room of Padova Observatory. The design of IFS is based on a new concept of double microlens array sampling the focal plane. This device named BIGRE consists of a system made of two microlens arrays with different focal lengths and thickness equal to the sum of them and precisely aligned each other. Moreover a mask has been deposited on the first array to produce a field stop for each lenslet, and a second mask is located on the intermediate pupil of the IFS to provide an aperture stop. After characterization of a previous prototype of BIGRE in the visible range, now the first measurements of the performances of the device in the IR range have been obtained on the instrument that will be mounted at the VLT telescope. These tests confirmed that specifications and properties of the prototype are met by state of the art on optics microlens manufacturing.


Optical Design and Engineering VII | 2018

Optical design of the post focal relay of MAORY

Matteo Lombini; Demetrio Magrin; Mauro Patti; D. Greggio; Fausto Cortecchia; Emiliano Diolaiti; V. De Caprio; A. De Rosa; E. Radaelli; Marco Riva; P. Ciliegi; S. Esposito; Philippe Feautrier; Roberto Ragazzoni

The Multi Conjugate Adaptive Optics RelaY (MAORY) is foreseen to be installed at the straight through focus over the Nasmyth platform of the future Extremely Large Telescope (ELT). MAORY has to re-image the telescope focal plane with diffraction limited quality and low geometric distortion, over a field of view of 20 arcsec diameter, for a wavelength range between 0.8 μm and 2.4 μm. Good and uniform Strehl ratio, accomplished with high sky coverage, is required for the wide field science. Two exit ports will be fed by MAORY. The first one is for a wide field Camera that is supposed to be placed on a gravity invariant port with an unvignetted FoV of 53 arcsec x 53 arcsec where diffraction limited optical quality (< 54nm RMS of wavefront error at the wavelength of 1 μm) and very low field distortion (< 0.1% RMS) must be delivered. The requirements regarding the optical quality, distortion and optical interfaces, together with the desire of reducing the number of reflecting surfaces (and consequently the thermal background), optics wavefront error (WFE), overall size, weight and possibly cost, drove the design to have 2 Deformable Mirrors (DMs) with optical power. The Post Focal Relay (PFR) is also required to split the 589 nm wavelength light of the Laser Guide Stars (LGS), used for high order wavefront sensing, by means of a dichroic that lets the light of 6 LGSs, arranged on a circle of about 90 arcsec diameter, pass through and reflects science beam. Behind the dichroic an objective creates the LGS image plane for the WFSs channel. We present in this paper the optical design and the tolerance analysis of the PFR and the objective. The tolerance analysis concerning the manufacturing and the alignment precision is also shown.


Astronomy and Astrophysics | 2018

Dynamical models to explain observations with SPHERE in planetary systems with double debris belts

C. Lazzoni; S. Desidera; Francesco Marzari; A. Boccaletti; M. Langlois; D. Mesa; R. Gratton; Q. Kral; N. Pawellek; J. Olofsson; M. Bonnefoy; G. Chauvin; A.-M. Lagrange; A. Vigan; E. Sissa; J. Antichi; H. Avenhaus; Andrea Baruffolo; J.-L. Baudino; A. Bazzon; J.-L. Beuzit; Beth A. Biller; Mariangela Bonavita; Wolfgang Brandner; P. Bruno; Esther Buenzli; F. Cantalloube; E. Cascone; A. Cheetham; R. U. Claudi

Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods. The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet’s physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values ( M p , a p ), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results. For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits.


Proceedings of SPIE | 2016

MAORY: adaptive optics module for the E-ELT

Emiliano Diolaiti; P. Ciliegi; R. Abicca; Guido Agapito; Carmelo Arcidiacono; Andrea Baruffolo; M. Bellazzini; Valdemaro Biliotti; Marco Bonaglia; Giovanni Bregoli; Runa Briguglio; O. Brissaud; Lorenzo Busoni; Luca Carbonaro; A. Carlotti; E. Cascone; J.-J. Correia; Fausto Cortecchia; G. Cosentino; V. De Caprio; M. de Pascale; A. De Rosa; C. Del Vecchio; A. Delboulbé; G. Di Rico; S. Esposito; D. Fantinel; P. Feautrier; Corrado Felini; Debora Ferruzzi

MAORY is one of the four instruments for the E-ELT approved for construction. It is an adaptive optics module offering two compensation modes: multi-conjugate and single-conjugate adaptive optics. The project has recently entered its phase B. A system-level overview of the current status of the project is given in this paper.


Proceedings of SPIE | 2008

SPHERE IFS optical concept description and design overview

J. Antichi; R. Gratton; R. U. Claudi; E. Giro; D. Mesa; S. Desidera; S. Scuderi; P. Bruno; M. Turatto; E. Cascone; V. De Caprio; J.-L. Beuzit; Pascal Puget; Kjetil Dohlen

Integral field spectroscopy coupled with an extreme adaptive optics system and coronagraphy allows a marked improvement of the standard spectroscopic simultaneous differential imaging calibration technique. Hence, with an integral field spectrograph (IFS) direct imaging of extrasolar giant planets becomes potentially feasible over a wide range of ages, masses, and separations from the hosting stars. This aim represents the prime goal of the planet finder instrument for the VLT (SPHERE). Inside SPHERE, the IFS channel exploits various spectral features of the candidate planets in the near infrared, in order to reduce the speckles noise at the level of the stellar background noise, over a field of view comprised between the coronagraphic inner working angle and the outer working angle provided by the SPHERE extreme adaptive optic system (SAXO). The IFS allows then to realize an extensive spectroscopic simultaneous differential imaging calibration technique, and at least in few cases, to get the spectrum of the candidate extrasolar giant planets. Here we present the IFS baseline design, which is based upon a new optical concept we developed for its integral field unit (BIGRE). When applied to the technical specifications of SPHERE IFS, a BIGRE integral field unit is able to take into account all the effects appearing when integral field spectroscopy is used in diffraction limited conditions and for high-contrast imaging purposes. Finally a BIGRE-oriented IFS optical design is shown here to reach the requested high optical quality by standard lenses-based optical devices.


Proceedings of SPIE | 2016

The new SOXS instrument for the ESO NTT

Pietro Schipani; R. U. Claudi; Sergio Campana; Andrea Baruffolo; S. Basa; S. Basso; E. Cappellaro; E. Cascone; Rosario Cosentino; Francesco D'Alessio; V. De Caprio; M. Della Valle; A. de Ugarte Postigo; Sergio D'Orsi; R. Franzen; J. P. U. Fynbo; Avishay Gal-Yam; Daniele Gardiol; E. Giro; Mario Hamuy; Marcella Iuzzolino; Davide Loreggia; Seppo Mattila; Matteo Munari; Giuliano Pignata; Marco Riva; S. Savarese; Brian Paul Schmidt; S. Scuderi; S. J. Smartt

SOXS (Son Of X-Shooter) will be a unique spectroscopic facility for the ESO-NTT 3.5-m telescope in La Silla (Chile), able to cover the optical/NIR band (350-1750 nm). The design foresees a high-efficiency spectrograph with a resolutionslit product of ~4,500, capable of simultaneously observing the complete spectral range 350 - 1750 nm with a good sensitivity, with light imaging capabilities in the visible band. This paper outlines the status of the project.


Proceedings of SPIE | 2009

DMD multi-object spectroscopy in space: the EUCLID study

Paolo Spanò; Frederic Zamkotsian; Robert Grange; Massimo Robberto; L. Valenziano; Filippo Maria Zerbi; Ray M. Sharples; F. Bortoletto; V. De Caprio; Laurent Martin; A. De Rosa; P. Franzetti; Emiliano Diolaiti; B. Garilli; L. Guzzo; P. Leutenegger; M. Scodeggio; R. Vink; G. Zamorani; A. Cimatti

The benefits Astronomy could gain by performing multi-slit spectroscopy in a space mission is renown. Digital Micromirror Devices (DMD), developed for consumer applications, represent a potentially powerful solution. They are currently studied in the context of the EUCLID project. EUCLID is a mission dedicated to the study of Dark Energy developed under the ESA Cosmic Vision programme. EUCLID is designed with 3 instruments on-board: a Visual Imager, an Infrared Imager and an Infrared Multi-Object Spectrograph (ENIS). ENIS is focused on the study of Baryonic Acoustic Oscillations as the main probe, based on low-resolution spectroscopic observations of a very large number of high-z galaxies, covering a large fraction of the whole sky. To cope with these challenging requirements, a highmultiplexing spectrograph, coupled with a relatively small telescope (1.2m diameter) has been designed. Although the current baseline is to perform slit-less spectroscopy, an important option to increase multiplexing rates is to use DMDs as electronic reconfigurable slit masks. A Texas Instrument 2048x1080 Cinema DMD has been selected, and space validation studies started, as a joint ESA-ENIS Consortium effort. Around DMD, a number of suited optical systems has been developed to project sky sources onto the DMD surface and then, to disperse light onto IR arrays. A detailed study started, both at system and subsystem level, to validate the initial proposal. Here, main results are shown, making clear that the use of DMD devices has great potential in Astronomical Instrumentation.


Proceedings of SPIE | 2008

Calibration and data reduction for planet detection with SPHERE-IFS

S. Desidera; R. Gratton; R. U. Claudi; J. Antichi; D. Mesa; Massimo Turatto; P. Bruno; E. Cascone; V. De Caprio; E. Giro; S. Scuderi; Markus Feldt; A. Pavlov; O. Moeller-Nilsson; Kjetil Dohlen; J.-L. Beuzit; David Mouillet; Pascal Puget; F. Wildi

The 2nd generation VLT instrument SPHERE will include an integral field spectrograph to enhance the capabilities of detection of planetary companions close to bright stars. SPHERE-IFS is foreseen to work in near IR (0.95-1.65 micron) at low spectral resolution. This paper describes the observing strategies, the adopted hardware solutions for calibrating the instrument, and the data reduction procedures that are mandatory for the achievement of the extreme contrast performances for which the instrument is designed.

Collaboration


Dive into the V. De Caprio's collaboration.

Top Co-Authors

Avatar

J.-L. Beuzit

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge