V. de Souza
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. de Souza.
Journal of Cosmology and Astroparticle Physics | 2014
W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; B. Fuchs; H. Gemmeke; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege; P. G. Isar; K.-H. Kampert; D. Kang; O. Krömer
Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 1017 eV and zenith angles smaller than 45o, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ?50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c 2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, Xmax, better than 30 g/c 2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.
Journal of Physics G | 2009
W.D. Apel; J. C. Arteaga; F. Badea; K. Bekk; M. Bertaina; J. Blümer; H. Bozdog; I.M. Brancus; M. Brüggemann; P. Buchholz; E. Cantoni; A. Chiavassa; F. Cossavella; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; J. Engler; M. Finger; D. Fuhrmann; P. L. Ghia; H.J. Gils; R. Glasstetter; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; T. Huege; P. G. Isar
Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.
Physics Letters B | 2016
W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; P. Bezyazeekov; K. Bekk; M. Bertaina; Peter L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; N. M. Budnev; E. Cantoni; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; O. Fedorov; B. Fuchs; H. Gemmeke; O. Gress; C. Grupen; A. Haungs; D. Heck; R. Hiller; J.R. Hörandel; A. Horneffer; D. Huber
Abstract The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100 PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10 % – limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level.
Brazilian Journal of Microbiology | 2008
V. de Souza; Virgínia Farias Alves; Maria Teresa Destro; E.C.P. De Martinis
L. monocytogenes is a foodborne psychrotrophic bacterial pathogen of special importance for minimally processed foods. In this work, it was enumerated in samples of surubim fish by MPN technique. The population of L. monocytogenes was estimated as < 0.012 MPN/cm 2 in fresh and < 0.03 MPN/g in minimally processed fish.
Journal of Cosmology and Astroparticle Physics | 2013
A. D. Supanitsky; V. de Souza
Different types of extragalactic objects are known to produce TeV gamma-rays. Some of these objects are the most probable candidates to accelerate cosmic rays up to 10 20 eV. It is very well known that gamma-rays can be produced as a result of the cosmic ray propagation through the intergalactic medium. These gamma-rays contribute to the total flux observed in the direction of the source. In this paper we propose a new method to derive an upper limit on the cosmic-ray luminosity of an individual source based on the measured upper limit on the integral flux of GeV-TeV gamma-rays. We show how it is possible to calculate an upper limit on the cosmic-ray luminosity of a particular source and we explore the parameter space in which the current GeV-TeV gamma-ray measurements can offer a useful determination. We study in detail two particular sources, Pictor A and NGC 7469, and we calculate the upper limit on the proton luminosity of each source based on the upper limit on the integral gamma-ray flux measured by the H.E.S.S. telescopes.
The Astrophysical Journal | 2017
W.D. Apel; J.C. Arteaga-Velázquez; K. Bekk; M. Bertaina; J. Blümer; H. Bozdog; I.M. Brancus; E. Cantoni; A. Chiavassa; F. Cossavella; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; Z. Feng; D. Fuhrmann; A. Gherghel-Lascu; H.J. Gils; R. Glasstetter; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; T. Huege; K.-H. Kampert; D. Kang; H.O. Klages; K. Link; P. Luczak
KASCADE and KASCADE-Grande were multi-detector installations to measure individual air showers of cosmic rays at ultra-high energy. Based on data sets measured by KASCADE and KASCADE-Grande, 90% C.L. upper limits to the flux of gamma-rays in the primary cosmic ray flux are determined in an energy range of
Astroparticle Physics | 2017
W.D. Apel; J.C. Arteaga-Velázquez; K. Bekk; M. Bertaina; J. Blümer; H. Bozdog; I.M. Brancus; E. Cantoni; A. Chiavassa; F. Cossavella; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; D. Fuhrmann; A. Gherghel-Lascu; H.J. Gils; R. Glasstetter; C. Grupen; A. Haungs; D. Heck; J.R. Hörandel; T. Huege; K.-H. Kampert; D. Kang; H.O. Klages; K. Link; P. Łuczak; H.J. Mathes
{10}^{14} - {10}^{18}
Proceedings of SPIE | 2013
Giovanni Pareschi; T. Armstrong; H. Baba; J. Bähr; A. Bonardi; G. Bonnoli; P. Brun; R. Canestrari; P. M. Chadwick; M. Chikawa; P. H. Carton; V. de Souza; J. Dipold; M. Doro; D. Durand; M. Dyrda; A. Förster; M. Garczarczyk; E. Giro; J. F. Glicenstein; Y. Hanabata; M. Hayashida; M. Hrabovski; C. Jeanney; M. Kagaya; Hideaki Katagiri; L. Lessio; D. Mandat; M. Mariotti; C. Medina
eV. The analysis is performed by selecting air showers with a low muon content as expected for gamma-ray-induced showers compared to air showers induced by energetic nuclei. The best upper limit of the fraction of gamma-rays to the total cosmic ray flux is obtained at
Journal of Cosmology and Astroparticle Physics | 2014
R.C. Anjos; V. de Souza; A. D. Supanitsky
3.7 \times {10}^{15}
5TH INTERNATIONAL WORKSHOP ON ACOUSTIC AND RADIO EEV NEUTRINO DETECTION ACTIVITIES: ARENA 2012 | 2013
M. Ludwig; W.D. Apel; J.C. Arteaga-Velázquez; L. Bähren; K. Bekk; M. Bertaina; P. L. Biermann; J. Blümer; H. Bozdog; I.M. Brancus; A. Chiavassa; K. Daumiller; V. de Souza; F. Di Pierro; P. Doll; R. Engel; H. Falcke; B. Fuchs; D. Fuhrmann; H. Gemmeke; C. Grupen; M. Haug; A. Haungs; D. Heck; J.R. Hörandel; A. Horneffer; D. Huber; T. Huege; P. G. Isar; K.-H. Kampert
eV with