Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Diaz is active.

Publication


Featured researches published by V. Diaz.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

The mirror system of COMPASS RICH-1

E. Albrecht; Günter Baum; R. Birsa; F. Borotto; F. Bradamante; A. Braem; A. Bressan; A. Chapiro; A. Cicuttin; C. D'Ambrosio; A. Colavita; S. Costa; M.L. Crespo; J. Ch. Gayde; S. Dalla Torre; V. Diaz; V. Duic; L. Fernandez Hernando; P. Fauland; Mir. Finger; F. Fratnik; M. Giorgi; B. Gobbo; R. Ijaduola; V. Kalinnikov; M. Lamanna; A. Martin; M Laub; M. Marengo; P. Pagano

The architecture and the properties of the mirror system of the COMPASS RICH-1 detector, composed by 116 spherical VUV reflecting units supported by a lightweight mechanical structure, are described.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

The radiator gas and the gas system of COMPASS RICH-1

E. Albrecht; Günter Baum; T. Bellunato; R. Birsa; M. Bosteels; F. Bradamante; A. Bressan; A. Chapiro; A. Cicuttin; A. Colavita; S. Costa; M.L. Crespo; S. Dalla Torre; V. Diaz; V. Duic; P. Fauland; F. Fratnik; M. Giorgi; B. Gobbo; R. Ijaduola; V. Kalinnikov; M. Lamanna; A. Martin; P. Pagano; P. Schiavon; F. Tessarotto; A. Zanetti

The design of the COMPASS RICH-1 gas system, its operational modes, the cleaning setups for the preparation of the radiator gas and transmission measurement installations are described. The gas system in presently fully operational and satisfactory transmission of VUV light through the radiator gas has been reached.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

COMPASS RICH-1

E. Albrecht; Günter Baum; R. Birsa; M. Bosteels; F. Bradamante; A. Braem; A. Bressan; A. Cicuttin; P. Ciliberti; A. Colavita; S. Costa; M.L. Crespo; P. Cristaudo; S. Dalla Torre; V. Diaz; P. Fauland; M. Finger; F. Fratnik; M. Giorgi; B. Gobbo; A. Grasso; R. Ijaduola; V. Kalinnikov; M. Lamanna; M Laub; A. Martin; G. Menon; P. Pagano; D. Panzieri; D. Piedigrossi

RICH-1, one of the key detectors of the COMPASS experiment at CERN SPS, is described. Photon detectors are MWPCs equipped with CsI photo-cathodes.


Nuclear Science Symposium Conference Record, 2008. NSS '08. IEEE | 2009

Micropattern gaseous photon detectors for Cherenkov imaging counters

M. Alexeev; R. Birsa; F. Bradamante; A. Bressan; M. Chiosso; P. Ciliberti; G. Croci; M.L. Colantoni; S. Dalla Torre; S. Duarte Pinto; O. Denisov; V. Diaz; V. Duic; A. Ferrero; M. Finger; H. Fischer; G. Giacomini; M. Giorgi; B. Gobbo; R. Hagemann; F.H. Heinsius; F. Herrmann; K. Königsmann; D. Kramer; L. Lauser; S. Levorato; A. Maggiora; A. Martin; G. Menon; A. Mutter

RICH counters for PID in the high momentum domain and in large acceptance experiments require photon detectors covering extended surface of several square meters and able to accept Cherenkov photons in a wide angular range. An ideal approach is represented by gaseous photon detectors, which allow covering wide surfaces at affordable costs.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008

Pattern recognition and PID for COMPASS RICH-1

P. Abbon; M. Alexeev; H. Angerer; R. Birsa; P. Bordalo; F. Bradamante; A. Bressan; M. Chiosso; P. Ciliberti; M.L. Colantoni; T. Dafni; S. Dalla Torre; E. Delagnes; O. Denisov; H. Deschamps; V. Diaz; N. Dibiase; V. Duic; W. Eyrich; A. Ferrero; M. Finger; H. Fischer; S. Gerassimov; M. Giorgi; B. Gobbo; R. Hagemann; D. von Harrach; F.H. Heinsius; R. Joosten; B. Ketzer

Abstract A package for pattern recognition and PID by COMPASS RICH-1 has been developed and used for the analysis of COMPASS data collected in the years 2002–2004, and 2006–2007 with the upgraded RICH-1 photon detectors. It has allowed the full characterization of the detector in the starting version and in the upgraded one as well as the PID for physics results. We report about the package structure and algorithms, and the detector characterization and PID results.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

The COMPASS RICH-1 read-out system

Günter Baum; R. Birsa; F. Bradamante; A. Bressan; A. Chapiro; A. Cicuttin; P. Ciliberti; A. Colavita; S. Costa; M.L. Crespo; P. Cristaudo; S. Dalla Torre; V. Diaz; P. Fauland; F. Fratnik; M. Giorgi; B. Gobbo; R. Ijaduola; V. Kalinnikov; M. Lamanna; A. Martin; G. Menon; P. Pagano; P. Schiavon; F. Tessarotto; A. Zanetti

This paper describes the reconfigurable read-out system for the 82944 RICH-1 channels of the COMPASS experiment (NA58) at CERN. The system is based on 192 identical large front-end boards (BORA board). BORA was designed for acquiring, digitizing, threshold subtracting and transmitting event data. The overall operation of the board is controlled and supervised by a DSP tightly interacting with an FPGA that acts as a parallel co-processor. The DSP allows characterizing each analog channel by locally calculating noise and pedestal. Each BORA communicates with the outside world through two optical fibers and through a dedicated DSP network. One optical fiber is used to receive event triggers, and the other one is used to transmit event data to subsequent processing stages of the acquisition system. The DSP network allows reconfiguring and reprogramming the DSPs and FPGAs as well as acquiring sample events to visualize the overall operation of the system. The whole RICH has eight DSP networks working in parallel. These networks are handled by DOLINA, a PC resident multiprocessor board containing eight DSPs. Each network is formed by 24 BORA DSPs and 1 DOLINA DSP. The read-out system can steadily work up to a trigger rate of 75 kHz with maximum pixel occupancy of 20%, reaching a transmission data rate of 5.13 Gbytes/s.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008

The fast readout system for the MAPMTs of COMPASS RICH-1

P. Abbon; M. Alexeev; H. Angerer; R. Birsa; P. Bordalo; F. Bradamante; A. Bressan; M. Chiosso; P. Ciliberti; M.L. Colantoni; T. Dafni; S. Dalla Torre; E. Delagnes; O. Denisov; H. Deschamps; V. Diaz; N. Dibiase; V. Duic; W. Eyrich; A. Ferrero; M. Finger; H. Fischer; S. Gerassimov; M. Giorgi; B. Gobbo; R. Hagemann; D. von Harrach; F.H. Heinsius; R. Joosten; B. Ketzer

A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates of up to 100 kHz with negligible dead-time. The system is designed as a very compact setup and is mounted directly behind the multi-anode photomultipliers. The data are digitized on the front-end boards and transferred via optical links to the readout system. The readout electronics system is described in detail together with its measured performances.


ieee nuclear science symposium | 2007

A highly integrated low-cost readout system for the COMPASS RICH-1 detector

P. Abbon; M. Alekseev; H. Angerer; M. Apollonio; R. Birsa; P. Bordalo; F. Bradamante; A. Bressan; L. Busso; M. Chiosso; P. Ciliberti; M.L. Colantoni; S. Costa; T. Dafni; S. Dalla Torre; E. Delagnes; H. Deschamps; V. Diaz; N. Dibiase; V. Duic; W. Eyrich; D. Faso; A. Ferrero; M. Finger; H. Fischer; M. Georgi; S. Gerassimov; B. Gobbo; R. Hagemann; D. von Harrach

Particle identification at high multiplicities is a key feature of the COMPASS experiment at CERNs SPS. Hadrons up to 50 GeV/c are identified by a RICH detector with a large horizontal and vertical acceptance of plusmn250 mrad and plusmn180 mrad, respectively. The central region of the photon detector is equipped with multi-anode photomultiplier tubes, the remaining 75% of the total active area are covered by MWPCs with Csl photocathodes. In order to improve the performance of the detector at very high beam intensities, more than 62000 channels of a new analog readout system of the MWPCs, based on the APV25 chip, were developed and installed in 2006. The new system features good single photon detection efficiency due to its low noise, negligible dead time at trigger rates up to 50 kHz, and low cost. In addition, sampling of the MWPC signal allows us to measure the signal time with a resolution of about 30 ns or better. The architecture of the new readout system as well as the performance results of the RICH-1 detector in the outer region during 2006 COMPASS run will be discussed.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

RICHONE: a software package for the analysis of COMPASS RICH-1 data

Günter Baum; R. Birsa; F. Bradamante; A. Bressan; A. Chapiro; A. Cicuttin; A. Colavita; S. Costa; M.L. Crespo; S. Dalla Torre; V. Diaz; V. Duic; P. Fauland; F. Fratnik; M. Giorgi; B. Gobbo; R. Ijaduola; V. Kalinnikov; M. Lamanna; A. Martin; P. Pagano; P. Schiavon; F. Tessarotto; A. Zanetti

Abstract RICHONE is the pattern recognition and PID code for COMPASS RICH-1. RICHONE is part of CORAL, the COMPASS software system, a C++ framework developed within the collaborations using up-to-date techniques and tools.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2010

THGEM based photon detector for Cherenkov imaging applications

M. Alexeev; R. Birsa; F. Bradamante; A. Bressan; M. Chiosso; P. Ciliberti; G. Croci; M.L. Colantoni; S. Dalla Torre; S. Duarte Pinto; O. Denisov; V. Diaz; A. Ferrero; M. Finger; H. Fischer; G. Giacomini; M. Giorgi; B. Gobbo; F.H. Heinsius; F. Herrmann; V. Jahodova; K. Königsmann; L. Lauser; S. Levorato; A. Maggiora; A. Martin; G. Menon; F. Nerling; D. Panzieri; G. Pesaro

Collaboration


Dive into the V. Diaz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Birsa

University of Trieste

View shared research outputs
Top Co-Authors

Avatar

M. Giorgi

University of Trieste

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Duic

University of Trieste

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Finger

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge