V.E.H. Dahlmans
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V.E.H. Dahlmans.
Atherosclerosis | 1994
Janine H. van Ree; Walther J. A. A. van den Broek; V.E.H. Dahlmans; Pieter H. E. Groot; Martin Vidgeon-Hart; Rune R. Frants; Bé Wieringa; Louis M. Havekes; Marten H. Hofker
Apolipoprotein (apo) E is a ligand for the receptor-mediated uptake of lipoprotein remnant particles. Complete absence of apo E in humans leads to a severe form of type III hyperlipoproteinemia. We have used targeted inactivation in murine embryonic stem cells, as also described by others, to specifically study the effects of heterozygous Apoe gene loss on the development of hyperlipidemia. After 6 weeks on a severe semi-synthetic atherogenic diet, heterozygous null mutants, with only one functional Apoe alle, developed hypercholesterolemia as compared with controls (10.1 mM vs. 4.7 mM serum cholesterol). Interestingly, serum cholesterol levels in female heterozygotes were doubled as compared with male heterozygotes (15.0 mM vs. 7.5 mM). On this diet, heterozygous apo E deficient mice also showed an increased susceptibility to atherosclerosis, depending on gender (mean lesion area per section of 9524 microns 2 vs. 61,388 microns 2 for males and females, respectively), whereas wild-type mice displayed far fewer lesions (354 microns 2 and 9196 microns 2 for males and females, respectively). This study indicates that a subnormal expression-level of the Apoe gene leads to hypercholesterolemia and, consequently, to an increased susceptibility to the development of atherosclerosis.
Journal of Clinical Investigation | 1998
M.C. Jong; Marion J. J. Gijbels; V.E.H. Dahlmans; P J Gorp; S J Koopman; M Ponec; M.H. Hofker; Louis M. Havekes
Transgenic mice were generated with different levels of human apolipoprotein C1 (APOC1) expression in liver and skin. At 2 mo of age, serum levels of cholesterol, triglycerides (TG), and FFA were strongly elevated in APOC1 transgenic mice compared with wild-type mice. These elevated levels of serum cholesterol and TG were due mainly to an accumulation of VLDL particles in the circulation. In addition to hyperlipidemia, APOC1 transgenic mice developed dry and scaly skin with loss of hair, dependent on the amount of APOC1 expression in the skin. Since these skin abnormalities appeared in two independent founder lines, a mutation related to the specific insertion site of the human APOC1 gene as the cause for the phenotype can be excluded. Histopathological analysis of high expressor APOC1 transgenic mice revealed a disorder of the skin consisting of epidermal hyperplasia and hyperkeratosis, and atrophic sebaceous glands lacking sebum. In line with these results, epidermal lipid analysis showed that the relative amounts of the sebum components TG and wax diesters in the epidermis of high expressor APOC1 transgenic mice were reduced by 60 and 45%, respectively. In addition to atrophic sebaceous glands, the meibomian glands were also found to be severely atrophic in APOC1 transgenic mice. High expressor APOC1 transgenic mice also exhibited diminished abdominal adipose tissue stores (a 60% decrease compared with wild-type mice) and a complete deficiency of subcutaneous fat. These results indicate that, in addition to the previously reported inhibitory role of apoC1 on hepatic remnant uptake, overexpression of apoC1 affects lipid synthesis in the sebaceous gland and/or epidermis as well as adipose tissue formation. These APOC1 transgenic mice may serve as an interesting in vivo model for the investigation of lipid homeostasis in the skin.
Journal of Clinical Investigation | 1996
M.C. Jong; V.E.H. Dahlmans; P.J.J. van Gorp; K.W. van Dijk; Marco L. Breuer; M.H. Hofker; L.M. Havekes
To study the role of apoC1 in lipoprotein metabolism, we have generated transgenic mice expressing the human APOC1 gene. On a sucrose-rich diet, male transgenic mice with high APOC1 expression in the liver showed elevated levels of serum cholesterol and triglyceride compared with control mice (5.7+/-0.7 and 3.3+/-2.1 vs. 2.7+/-0.1 and 0.4+/-0.1 mmol/liter, respectively). These elevated levels were mainly confined to the VLDL fraction. Female APOC1 transgenic mice showed less pronounced elevated serum lipid levels. In vivo VLDL turnover studies revealed that, in hyperlipidemic APOC1 transgenic mice, VLDL particles are cleared less efficiently from the circulation as compared with control mice. No differences were observed in the hepatic production and extrahepatic lipolysis of VLDL-triglyceride. Also, VLDL isolated from control and APOC1 transgenic mice were found to be equally good substrates for bovine lipoprotein lipase in vitro. These data indicate that the hyperlipidemia in APOC1 transgenic mice results primarily from impaired hepatic VLDL particle clearance, rather than a defect in the hydrolysis of VLDL-triglyceride. To investigate which hepatic receptor is involved in the apoC1-mediated inhibition of VLDL clearance, APOC1 transgenic mice were bred with an LDL receptor-deficient (LDLR(-/-)) background. In addition, control, LDLR(-/-), and LDLR(-/-)/APOC1 mice were transfected with adenovirus carrying the gene for the receptor-associated protein (Ad-RAP). Both serum cholesterol and triglyceride levels were strongly elevated in LDLR(-/-)/APOC1 mice compared with LDLR(-/-) mice (52+/-19 and 36+/-19 vs. 8.4+/-0.9 and 0.5+/-0.2 mmol/liter, respectively), indicating that apoC1 inhibits the alternative VLDL clearance pathway via the remnant receptor. Transfection of LDLR(-/-) mice with Ad-RAP strongly increased serum cholesterol and triglyceride levels, but to a lesser extent than those found in LDLR(-/-)/APOC1 mice (39+/-8 and 17+/-8 vs. 52+/-19 and 36+/-19 mmol/liter, respectively). However, in LDLR(-/-)/APOC1 mice the transfection with Ad-RAP did not further increase serum cholesterol and triglyceride levels (52+/-19 and 36+/-19 vs. 60+/-10 and 38+/-7 mmol/liter, respectively). From these studies we conclude that, in the absence of the LDLR, apoC1 inhibits the hepatic uptake of VLDL via a RAP-sensitive pathway.
Nucleus | 2011
Nard Kubben; Jan Willem Voncken; Gonda Konings; Michel van Weeghel; Maarten M.G. van den Hoogenhof; Marion J. J. Gijbels; Arie van Erk; Kees Schoonderwoerd; Bianca van den Bosch; V.E.H. Dahlmans; Chantal Calis; Sander M. Houten; Tom Misteli; Yigal M. Pinto
A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT-/-) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies.
Molecular and Cellular Biochemistry | 2002
Jeltje R. Goudriaan; V.E.H. Dahlmans; Maria Febbraio; Bas Teusink; Johannes A. Romijn; Louis M. Havekes; Peter J. Voshol
Increasing evidence has implicated the membrane protein CD36 (or fatty acid translocase, FAT) to be involved in high affinity fatty acid uptake. CD36 is expressed in tissues active in fatty acid metabolism, like adipose tissue and skeletal and cardiac muscle, but also in intestine. CD36 is localized in the intestine mainly in the jejunal villi, where it is confined to enterocyte apical membrane.The aim was to determine the role of CD36 in intestinal lipid absorption. Lipid absorption was determined by administering 3H-labeled triolein and 14C-labeled palmitic acid as an olive oil bolus by intragastric gavage and determine appearance of 3H and 14C label in plasma, after blocking lipolysis by i.v. injections of Triton WR 1339. Surprisingly, no differences in plasma appearance of 3H-label or 14C-label were observed in CD36–/– mice compared to wild type controls. These results suggest that CD36 does not play a role in intestinal lipid absorption after an acute lipid load.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1996
M.C. Jong; V.E.H. Dahlmans; P.J.J. van Gorp; Michael Breuer; M.J.T.M. Mol; A. van der Zee; Rune R. Frants; Marten H. Hofker; Louis M. Havekes
Transgenic mice overexpressing human APOE*3Leiden are highly susceptible to diet-induced hyperlipoproteinemia and atherosclerosis due to a defect in hepatic uptake of remnant lipoproteins. In addition to the human APOE*3Leiden gene, these mice carry the human APOC1 gene (APOE*3Leiden-C1). To investigate the possible effect of simultaneous expression of the human APOC1 gene, we examined the phenotypic expression in these APOE*3Leiden-C1 mice in relation to transgenic mice expressing the APOE*3Leiden gene without the APOC1 gene (APOE*3Leiden-HCR). APOE*3Leiden-C1 and APOE*3Leiden-HCR mice had comparable liver expression for the APOE*3Leiden transgene and high total cholesterol levels on a sucrose-based diet compared with control mice (4.3 and 4.3 versus 2.1 mmol/L). In addition, on this diet APOE*3Leiden-C1 mice displayed significantly higher serum triglyceride levels than APOE*3Leiden-HCR mice and control mice (4.4 versus 0.6 and 0.2 mmol/L). Elevated triglyceride and cholesterol levels were mainly in the VLDL-sized lipoproteins. In vivo turnover studies with endogenously triglyceride-labeled VLDL showed a reduced VLDL triglyceride fractional catabolic rate for APOE*3Leiden-C1 and APOE*3Leiden-HCR mice compared with control mice (3.5 and 11.0 versus 20.4 pools per hour). To study whether the difference in fractional catabolic rates between the two transgenic strains was due to an inhibiting effect of apoC1 on the extrahepatic lipolysis or hepatic-mediated uptake of VLDL, turnover experiments were performed in functionally hepatectomized mice. Strikingly, both APOE*3Leiden-C1 and APOE*3Leiden-HCR mice showed a decreased lipolytic rate of VLDL triglyceride in the extrahepatic circulation compared with control mice (1.5 and 1.8 versus 6.3 pools per hour). We conclude that next to an impaired hepatic uptake, overexpression of the APOE*3Leiden gene influences the extrahepatic lipolysis of VLDL triglycerides, whereas simultaneous overexpression of the APOC1 gene leads to a further decrease in hepatic clearance of VLDL.
Diabetologia | 2001
S. J. Koopmans; M.C. Jong; Ivo Que; V.E.H. Dahlmans; Hanno Pijl; J. K. Radder; Marijke Frölich; Louis M. Havekes
Aims/hypothesis. Insulin resistance for glucose metabolism is associated with hyperlipidaemia and high blood pressure. In this study we investigated the effect of primary hyperlipidaemia on basal and insulin-mediated glucose and on non-esterified fatty acid (NEFA) metabolism and mean arterial pressure in hyperlipidaemic transgenic mice overexpressing apolipoprotein C1 (APOC1). Previous studies have shown that APOC1 transgenic mice develop hyperlipidaemia primarily because of an impaired hepatic uptake of very low density lipoprotein (VLDL). Methods. Basal and hyperinsulinaemic (6 mU · kg–1· min–1), euglycaemic (7 mmol/l) clamps with 3-3H-glucose or 9,10-3H-palmitic acid infusions and in situ freeze clamped tissue collection were carried out. Results. The APOC1 mice showed increased basal plasma cholesterol, triglyceride, NEFA and decreased glucose concentrations compared with wild-type mice (7.0 ± 1.2 vs 1.6 ± 0.1, 9.1 ± 2.3 vs 0.6 ± 0.1, 1.9 ± 0.2 vs 0.9 ± 0.1 and 7.0 ± 1.0 vs 10.0 ± 1.1 mmol/l, respectively, p < 0.05). Basal whole body glucose clearance was increased twofold in APOC1 mice compared with wild-type mice (18 ± 2 vs 10 ± 1 ml · kg–1· min–1, p < 0.05). Insulin-mediated whole body glucose uptake, glycolysis (generation of 3H2O) and glucose storage increased in APOC1 mice compared with wild-type mice (339 ± 28 vs 200 ± 11; 183 ± 39 vs 128 ± 17 and 156 ± 44 vs 72 ± 17 μmol · kg–1· min–1, p < 0.05, respectively), corresponding with a twofold to threefold increase in skeletal muscle glycogenesis and de novo lipogenesis from 3-3H-glucose in skeletal muscle and adipose tissue (p < 0.05). Basal whole body NEFA clearance was decreased threefold in APOC1 mice compared with wild-type mice (98 ± 21 vs 314 ± 88 ml · kg–1· min–1, p < 0.05). Insulin-mediated whole body NEFA uptake, NEFA oxidation (generation of 3H2O) and NEFA storage were lower in APOC1 mice than in wild-type mice (15 ± 3 vs 33 ± 6; 3 ± 2 vs 11 ± 4 and 12 ± 2 vs 22 ± 4 μmol · kg–1· min–1, p < 0.05) in the face of higher plasma NEFA concentrations (1.3 ± 0.3 vs 0.5 ± 0.1 mmol/l, p < 0.05), respectively. Mean arterial pressure and heart rate were similar in APOC1 vs wild-type mice (82 ± 4 vs 85 ± 3 mm Hg and 459 ± 14 vs 484 ± 11 beats · min–1). Conclusions/interpretation. 1) Hyperlipidaemic APOC1 mice show reduced NEFA and increased glucose metabolism under both basal and insulin-mediated conditions, suggesting an intrinsic defect in NEFA metabolism. Primary hyperlipidaemia alone in APOC1 mice does not lead to insulin resistance for glucose metabolism and high blood pressure. [Diabetologia (2001) 44: 437–443]
Arteriosclerosis, Thrombosis, and Vascular Biology | 2000
Sabine M. Post; Baukje de Roos; Martijn Vermeulen; Lydia Afman; M.C. Jong; V.E.H. Dahlmans; Louis M. Havekes; Frans Stellaard; Martijn B. Katan
Cafestol, a diterpene present in unfiltered coffee, potently increases serum cholesterol levels in humans. So far, no suitable animal model has been found to study the biochemical background of this effect. We determined the effect of cafestol on serum cholesterol and triglycerides in different mouse strains and subsequently studied its mechanism of action in apolipoprotein (apo) E*3-Leiden transgenic mice. ApoE*3-Leiden, heterozygous low density lipoprotein-receptor (LDLR+/-) knockout, or wild-type (WT) C57BL/6 mice were fed a high- (0.05% wt/wt) or a low- (0.01% wt/wt) cafestol diet or a placebo diet for 8 weeks. Standardized to energy intake, these amounts are equal to 40, 8, or 0 cups of unfiltered coffee per 10 MJ per day in humans. In apoE*3-Leiden mice, serum cholesterol was statistically significantly increased by 33% on the low- and by 61% on the high-cafestol diet. In LDLR+/- and WT mice, the increases were 20% and 24%, respectively, on the low-cafestol diet and 55% and 46%, respectively, on the high-cafestol diet. These increases were mainly due to a rise in very low density lipoprotein (VLDL) and intermediate density lipoprotein cholesterol in all 3 mouse strains. To investigate the mechanism of this effect, apoE*3-Leiden mice were fed a high-cafestol or a placebo diet for 3 weeks. Cafestol suppressed enzyme activity and mRNA levels of cholesterol 7alpha-hydroxylase by 57% and 58%, respectively. mRNA levels of enzymes involved in the alternate pathway of bile acid synthesis, ie, sterol 27-hydroxylase and oxysterol 7alpha-hydroxylase, were reduced by 32% and 48%, respectively. The total fecal bile acid output was decreased by 41%. Cafestol did not affect hepatic free and esterified cholesterol, but it decreased LDLR mRNA levels by 37%. The VLDL apoB and triglyceride production rates, as measured after Triton injection, were 2-fold decreased by cafestol, indicating that the number of particles secreted had declined and that there was no change in the amount of triglycerides present in the VLDL particle during cafestol treatment. However, the VLDL particles contained a 4-times higher amount of cholesteryl esters, resulting in a net 2-fold increased secretion of cholesteryl esters. The decrease in triglyceride production was the result of a reduction in hepatic triglyceride content by 52%. In conclusion, cafestol increases serum cholesterol levels in apoE*3-Leiden mice by suppression of the major regulatory enzymes in the bile acid synthesis pathways, leading to decreased LDLR mRNA levels and increased secretion of hepatic cholesterol esters. We suggest that suppression of bile acid synthesis may provide an explanation for the cholesterol-raising effect of cafestol in humans.
Journal of the American College of Cardiology | 2008
Susanne W.M. van den Borne; Jagat Narula; J. Willem Voncken; Peter Lijnen; Helena T.M. Vervoort-Peters; V.E.H. Dahlmans; Jos F.M. Smits; Mat J.A.P. Daemen; W. Matthijs Blankesteijn
OBJECTIVES Our goal was to evaluate intercellular adhesion complex proteins in myocardium in human infarct rupture. BACKGROUND Infarct rupture, a fatal complication of myocardial infarction (MI), has been attributed to a defective cell adhesion complex in a transgenic mouse model. METHODS Heart samples were collected from autopsies from infarct rupture and control (nonrupture) MI patients. Both infarcted and remote areas were included. Cell adhesion proteins including alphaE-catenin, beta-catenin, gamma-catenin, and N-cadherin were characterized by immunohistochemistry and immunoblotting. Genetic analysis was undertaken to evaluate mutations and polymorphisms in the alphaE-catenin gene. In addition, infarct rupture was studied in transgenic mice heterozygous for alphaE-catenin C-terminal deficiency, mimicking the situation in human infarct rupture patients. RESULTS No alphaE-catenin was detected in 70% of remote samples of infarct rupture hearts compared with 20% in control MI by immunohistochemistry. The immunoblot analysis confirmed a significant reduction in remote areas, and complete absence of alphaE-catenin in infarct areas from infarct rupture patients. No mutation or polymorphism of the alphaE-catenin gene was discovered. Other cell adhesion proteins were not significantly affected in remote areas of infarct rupture hearts. Three-fourths of the heterozygous alphaE-catenin C-terminal truncated mice died of infarct rupture, compared with one-fourth of the wild-type littermates. CONCLUSIONS The data show a reduced expression and defective localization of alphaE-catenin in the intercalated disc region in patients dying of infarct rupture. The mechanism of lower expression of alphaE-catenin remains to be elucidated.
PLOS ONE | 2013
Frank Spaapen; Guus G. H. van den Akker; M.M. Caron; Peggy Prickaerts; Celine Rofel; V.E.H. Dahlmans; Don A. M. Surtel; Yvette Paulis; Finja Schweizer; Tim J. M. Welting; Lars Eijssen; Jan Willem Voncken
Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3) blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.