Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Egorov is active.

Publication


Featured researches published by V. Egorov.


Physical Review Letters | 2005

First results of the search for neutrinoless double-beta decay with the NEMO 3 detector.

R. Arnold; C. Augier; J. Baker; A. S. Barabash; G. Broudin; V. Brudanin; A. J. Caffrey; E. Caurier; V. Egorov; K. Errahmane; A.I. Etienvre; J.L. Guyonnet; F. Hubert; Ph. Hubert; C. Jollet; S. Jullian; O. Kochetov; V. Kovalenko; S. I. Konovalov; D. Lalanne; F. Leccia; C. Longuemare; G. Lutter; Ch. Marquet; F. Mauger; F. Nowacki; H. Ohsumi; F. Piquemal; J. L. Reyss; R. Saakyan

The NEMO 3 detector, which has been operating in the Frejus underground laboratory since February 2003, is devoted to the search for neutrinoless double beta decay (bb0nu). Half-lives of the two neutrino double beta decays (bb2nu) have been measured for 100Mo and 82Se. After 389 effective days of data collection from February 2003 until September 2004 (Phase I), no evidence for neutrinoless double beta decay was found from ~7kg of 100Mo and ~1 kg of 82Se. The corresponding lower limits for the half-lives are 4.6 x 10^23 years for 100Mo and 1.0 x10^23 years for 82Se (90% C.L.). Depending on the nuclear matrix elements calculation, limits for the effective Majorana neutrino mass are<0.7-2.8 eV for 100Mo and<1.7-4.9 eV for 82Se


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2005

Technical design and performance of the NEMO 3 detector

R. Arnold; C. Augier; A.M. Bakalyarov; J. Baker; A. S. Barabash; Ph. Bernaudin; M. Bouchel; V. Brudanin; A. J. Caffrey; J. Cailleret; J.E. Campagne; D. Dassie; V. Egorov; K. Errahmane; A.I. Etienvre; T. Filipova; J. Forget; A. Guiral; P. Guiral; J.L. Guyonnet; F. Hubert; Ph. Hubert; Bernard Humbert; R. Igersheim; P. Imbert; C. Jollet; S. Jullian; I. Kisel; A. Klimenko; O. Kochetov

Abstract The development of the Neutrino Ettore Majorana Observatory (NEMO ∼ 3 ) detector, which is now running in the Frejus Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun more than ten years ago. The NEMO 3 detector uses a tracking-calorimeter technique in order to investigate double beta decay processes for several isotopes. The technical description of the detector is followed by the presentation of its performance.


Advances in High Energy Physics | 2014

The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

N. Abgrall; E. Aguayo; Frank T. Avignone; A. S. Barabash; F. E. Bertrand; Melissa Boswell; V. Brudanin; M. Busch; A. S. Caldwell; Y.D. Chan; C. D. Christofferson; D. C. Combs; J. A. Detwiler; P. J. Doe; Y. V. Efremenko; V. Egorov; H. Ejiri; S. R. Elliott; J. Esterline; J. E. Fast; P. Finnerty; F. M. Fraenkle; A. Galindo-Uribarri; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; V. E. Guiseppe; K. Gusev; A. L. Hallin

The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta decay of the isotope Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the DEMONSTRATOR and the details of its design.


European Physical Journal C | 2010

Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

R. Arnold; C. Augier; J. Baker; A. S. Barabash; A. Basharina-Freshville; M. Bongrand; V. Brudanin; A. J. Caffrey; S. Cebrián; A. Chapon; E. Chauveau; Th. Dafni; Frank F. Deppisch; J. Díaz; D. Durand; V. Egorov; J. J. Evans; R. Flack; K-I. Fushima; I. García Irastorza; X. Garrido; Haley Louise Gomez; B. Guillon; A. Holin; K. Holy; J.J. Horkley; Ph. Hubert; C. Hugon; F. J. Iguaz; N. Ishihara

The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double β decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double β decay by measuring the decay half-life and the electron angular and energy distributions.


Physical Review C | 2009

Measurement of the Double Beta Decay Half-life of Nd-150 and Search for Neutrinoless Decay Modes with the NEMO-3 Detector

J. Argyriades; R. Arnold; C. Augier; J. Baker; A. S. Barabash; A. Basharina-Freshville; M. Bongrand; G. Broudin; V. Brudanin; A. J. Caffrey; E. Chauveau; Z. Daraktchieva; D. Durand; V. Egorov; N. Fatemi-Ghomi; R. L. Flack; Ph. Hubert; J. Jerie; S. Jullian; M. Kauer; S. King; A. Klimenko; O. Kochetov; S. I. Konovalov; V. Kovalenko; D. Lalanne; T. Lamhamdi; K. Lang; Y. Lemière; C. Longuemare

The half-life for double-{beta} decay of {sup 150}Nd has been measured by the NEMO-3 experiment at the Modane Underground Laboratory. Using 924.7 days of data recorded with 36.55 g of {sup 150}Nd, we measured the half-life for 2{nu}{beta}{beta} decay to be T{sub 1/2}{sup 2{nu}}=(9.11{sub -0.22}{sup +0.25}(stat.){+-}0.63(syst.))x10{sup 18} yr. The observed limit on the half-life for neutrinoless double-{beta} decay is found to be T{sub 1/2}{sup 0{nu}}>1.8x10{sup 22} yr at 90% confidence level. This translates into a limit on the effective Majorana neutrino mass of <4.0-6.3 eV if the nuclear deformation is taken into account. We also set limits on models involving Majoron emission, right-handed currents, and transitions to excited states.


Nuclear Physics | 1998

Double-β decay of 82Se

R. Arnold; C.S. Sutton; D. Dassie; I. Kisel; V.M. Kornoukhov; F. Hubert; A.J. Caffrey; V. Kovalenko; J. Baker; Y. Vasilyev; C. Longuemare; H.W. Nicholson; V. Brudanin; O. Kochetov; V. Zerkin; Ph. Hubert; V. Egorov; F. Laplanche; G. Szklarz; V.I. Tretyak; X. Sarazin; I. Vanyushin; R. Torres; R. Eschbach; O. Purtov; Jean-Eric Campagne; V. I. Umatov; P. Mennrath; E. Caurier; I. Linck

Abstract The NEMO-2 tracking detector located in the Frejus Underground Laboratory was designed as a prototype of the NEMO-3 detector to study neutrinoless (Oν) and two neutrino (2ν) double-beta decay (ββ) physics. After 10357 h of running with an isotopically enriched selenium source (2.17 mol yr of 82Se) a ββ2ν decay half-life of T 1 2 = (0.83 ± 0.10( stat ) ± 0.07 ( syst )) × 10 20 yr was measured. Limits with a 90% C.L. on the 82Se half-lives of 9.5 × 1021 yr for ββ0ν decay to the ground state, 2.8 × 1021 yr to the (2+) excited state and 2.4 × 1021 yr for ββ0νχ0 decay with a Majoron (χ0) were also obtained.


Nuclear Physics | 1999

Double beta decay of 96Zr

R. Arnold; C. Augier; J. Baker; A. S. Barabash; D. Blum; V. Brudanin; A. J. Caffrey; Jean-Eric Campagne; E. Caurier; D. Dassie; V. Egorov; T. Filipova; R. Gurriaran; J.L. Guyonnet; F. Hubert; Ph. Hubert; S. Jullian; I. Kisel; O. Kochetov; V.N. Kornoukhov; V. Kovalenko; D. Lalanne; F. Laplanche; F. Leccia; I. Linck; C. Longuemare; Ch. Marquet; F. Mauger; H.W. Nicholson; I. Pilugin

Abstract After 10357 h of running the NEMO-2 tracking detector with an isotopically enriched zirconium source (0.084 mol yr of 96Zr), a ββ2ν decay half-life of T1/2=(2.1+0.8(stat)−0.4(stat)±0.2(syst))·1019 y was measured. Limits with a 90% C.L. on the 96Zr half-lives of 1.0·1021 y for ββ0ν decay to the ground state, 3.9·1020 y to the 2+ excited state and 3.5·1020 y for ββ0νχ0 decay with a Majoron (χ0) were obtained. The data also provide direct limits at the 90% C.L. for the 94Zr half-lives. These limits are 1.1·1017 y for ββ2ν decay to the ground state, 1.9·1019 y for ββ0ν decay to the ground state and 2.3·1018 y for ββ0νχ0 decay to ground state.


Nuclear Physics | 2000

Limits on different Majoron decay modes of Mo-100 and Se-82 for neutrinoless double beta decays in the NEMO-3 experiment

R. Arnold; C.S. Sutton; V. Timkin; L. Vála; F. Hubert; A. J. Caffrey; V. Kovalenko; J. Baker; L. Simard; V. Vorobel; C. Longuemare; S. I. Konovalov; V. Brudanin; O. Kochetov; S. Jullian; R. Saakyan; V. Egorov; V.I. Tretyak; G. Szklarz; X. Sarazin; I. Vanyushin; F. Nowacki; S. King; V. Vasilyev; V. I. Umatov; Ts. Vylov; A.I. Etienvre; G. Lutter; F. Šimkovic; E. Caurier

Abstract The NEMO-3 tracking detector is located in the Frejus Underground Laboratory. It was designed to study double beta decay in a number of different isotopes. Presented here are the experimental half-life limits on the double beta decay process for the isotopes 100Mo and 82Se for different majoron emission modes and limits on the effective neutrino–majoron coupling constants. In particular, new limits on “ordinary” majoron (spectral index 1) decay of 100Mo ( T 1 / 2 > 2.7 × 10 22 yr ) and 82Se ( T 1 / 2 > 1.5 × 10 22 yr ) have been obtained. Corresponding bounds on the majoron–neutrino coupling constant are 〈 g e e 〉 ( 0.4 – 1.8 ) × 10 −4 and ( 0.66 – 1.9 ) × 10 −4 .


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1995

Performance of a prototype tracking detector for double beta decay measurements

R. Arnold; A. S. Barabash; D. Blum; V. Brudanin; J.E. Campagne; F.A. Danevich; D. Dassie; V. Egorov; R. Eschbach; J.L. Guyonnet; F. Hubert; Ph. Hubert; M.C. Isaac; C. Izac; S. Jullian; O. Kochetov; V. N. Kornoukov; V. Kouts; V. Kovalenko; D. Lalanne; T. Lamhamdi; F. Laplanche; F. Leccia; Yu.B. Lepikhin; I. Linck; C. Longuemare; F. Mauger; P. Mennrath; F. Natchez; H.W. Hicholson

Abstract To investigate double beta decay processes, the NEMO collaboration began a long-range research and development program in 1988. The NEMO 2 detector, which is now running in the Frejus underground laboratory (L.S.M. Laboratoire Souterrain de Modane), is the second prototype. It consists of a 1 m2 source foil sandwiched between Geiger cell drift chambers for electron tracking and two plastic scintillator walls for energy and time-of-flight measurements. The technical description of the detector is followed by the study of the various sources of background.


Physics of Particles and Nuclei Letters | 2013

Gemma experiment: The results of neutrino magnetic moment search

A.G. Beda; V. Brudanin; V. Egorov; D. Medvedev; V. S. Pogosov; E. A. Shevchik; M. Shirchenko; A. Starostin; I. Zhitnikov

The result of the neutrino magnetic moment (NMM) measurement at the Kalinin Nuclear Power Plant (KNPP) with GEMMA spectrometer is presented. The antineutrino-electron scattering is investigated. A high-purity germanium (HPGe) detector with a mass of 1.5 kg placed at a distance of 13.9 m from the 3 GWth reactor core is exposed to the antineutrino flux of 2.7 × 1013 cm−2s−1. The recoil electron spectra taken in 18134 and 4487 h for the reactor ON and OFF periods are compared. The upper limit for the NMM μν < 2.9 × 10−11 μB at 90% C.L. is derived from the data processing.

Collaboration


Dive into the V. Egorov's collaboration.

Top Co-Authors

Avatar

V. Brudanin

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Kovalenko

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

Ts. Vylov

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

Ph. Hubert

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

N. I. Rukhadze

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

O. Kochetov

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

A. Kovalík

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

Ch. Briançon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

C. Augier

University of Paris-Sud

View shared research outputs
Researchain Logo
Decentralizing Knowledge