V.G. Frokjaer
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V.G. Frokjaer.
Journal of Experimental Psychology: General | 2012
Christian Gaden Jensen; Signe Vangkilde; V.G. Frokjaer; Steen G. Hasselbalch
Improvements in attentional performance are at the core of proposed mechanisms for stress reduction in mindfulness meditation practices. However, this claim can be questioned because no previous studies have actively manipulated test effort in control groups and controlled for effects of stress reduction per se. In a blinded design, 48 young, healthy meditation novices were randomly assigned to a mindfulness-based stress reduction (MBSR), nonmindfulness stress reduction (NMSR), or inactive control group. At posttest, inactive controls were randomly split into nonincentive and incentive controls, the latter receiving a financial reward to improve attentional performance. Pre- and postintervention, 5 validated attention paradigms were employed along with self-report scales on mindfulness and perceived stress and saliva cortisol samples to measure physiological stress. Attentional effects of MBSR, NMSR, and the financial incentive were comparable or significantly larger in the incentive group on all reaction-time-based measures. However, selective attention in the MBSR group improved significantly more than in any other group. Similarly, only the MBSR intervention improved the threshold for conscious perception and visual working memory capacity. Furthermore, stress-reducing effects of MBSR were supported because those in the MBSR group showed significantly less perceived and physiological stress while increasing their mindfulness levels significantly. We argue that MBSR may contribute uniquely to attentional improvements but that further research focusing on non-reaction-time-based measures and outcomes less confounded by test effort is needed. Critically, our data demonstrate that previously observed improvements of attention after MBSR may be seriously confounded by test effort and nonmindfulness stress reduction.
NeuroImage | 2010
David Erritzoe; V.G. Frokjaer; Mette Haahr; Jan Kalbitzer; C. Svarer; Klaus K. Holst; D. L. Hansen; Terry L. Jernigan; Szabolcs Lehel; Gitte M. Knudsen
Overweight and obesity is a health threat of increasing concern and understanding the neurobiology behind obesity is instrumental to the development of effective treatment regimes. Serotonergic neurotransmission is critically involved in eating behaviour; cerebral level of serotonin (5-HT) in animal models is inversely related to food intake and body weight and some effective anti-obesity agents involve blockade of the serotonin transporter (SERT). We investigated in 60 healthy volunteers body mass index (BMI) and regional cerebral SERT binding as measured with [(11)C]DASB PET. In a linear regression model with adjustment for relevant covariates, we found that cortical and subcortical SERT binding was negatively correlated to BMI (-0.003 to -0.012 BP(ND) unit per kg/m(2)). Tobacco smoking and alcohol consumption did not affect cerebral SERT binding. Several effective anti-obesity drugs encompass blockade of the SERT; yet, our study is the first to demonstrate an abnormally decreased cerebral SERT binding in obese individuals. Whether the SERT has a direct role in the regulation of appetite and eating behaviour or whether the finding is due to a compensatory downregulation of SERT secondary to other dysfunction(s) in the serotonergic transmitter system, such as low baseline serotonin levels, remains to be established.
Molecular Psychiatry | 2014
Mette E. Haahr; Patrick M. Fisher; Christian Gaden Jensen; V.G. Frokjaer; B. Mc Mahon; Kathrine Skak Madsen; William Frans Christian Baaré; Szabolcs Lehel; A. Norremolle; Eugenii A. Rabiner; Gitte M. Knudsen
Identification of a biomarker that can inform on extracellular serotonin (5-HT) levels in the brains of living humans would enable greater understanding of the way brain circuits are modulated by serotonergic neurotransmission. Substantial evidence from studies in animals and humans indicates an inverse relationship between central 5-HT tonus and 5-HT type 4 receptor (5-HT4R) density, suggesting that 5-HT4R receptor density may be a biomarker marker for 5-HT tonus. Here, we investigated whether a 3-week administration of a selective serotonin reuptake inhibitor, expected to increase brain 5-HT levels, is associated with a decline in brain 5-HT4R binding. A total of 35 healthy men were studied in a placebo-controlled, randomized, double-blind study. Participants were assigned to receive 3 weeks of oral dosing with placebo or fluoxetine, 40 mg per day. Brain 5-HT4R binding was quantified at baseline and at follow-up with [11C]SB207145 positron emission tomography (PET). Three weeks of intervention with fluoxetine was associated with a 5.2% reduction in brain 5-HT4R binding (P=0.017), whereas placebo intervention did not change 5-HT4R binding (P=0.52). Our findings are consistent with a model, wherein the 5-HT4R density adjusts to changes in the extracellular 5-HT tonus. Our data demonstrate for the first time in humans that the imaging of central 5-HT4R binding may be used as an in vivo biomarker of the central 5-HT tonus.
Biological Psychiatry | 2015
V.G. Frokjaer; Anja Pinborg; Klaus K. Holst; Agnete Overgaard; Susanne Henningsson; Maria Heede; Elisabeth C. Larsen; Peter S. Jensen; Mikael Agn; Anna Pors Nielsen; D.S. Stenbæk; Sophie da Cunha-Bang; Szabolcs Lehel; Hartwig R. Siebner; Jens D. Mikkelsen; Claus Svarer; Gitte M. Knudsen
BACKGROUND An adverse response to acute and pronounced changes in sex-hormone levels during, for example, the perimenopausal or postpartum period appears to heighten risk for major depression in women. The underlying risk mechanisms remain elusive but may include transiently compromised serotonergic brain signaling. Here, we modeled a biphasic ovarian sex hormone fluctuation using a gonadotropin-releasing hormone agonist (GnRHa) and evaluated if emergence of depressive symptoms was associated with change in cerebral serotonin transporter (SERT) binding following intervention. METHODS A double-blind, randomized, placebo-controlled study included 63 healthy female volunteers (mean age 24.3 ± 4.9 years) with regular menstrual cycles between 23 and 35 days. Participants were randomized to active (goserelin [GnRHa] 3.6 mg implant) or placebo intervention. Sixty women completed follow-up and entered the analyses. Primary outcome measures were changes from baseline in depressive symptoms assessed on the 17-item Hamilton Depression Rating Scale and SERT binding as imaged by [(11)C]DASB positron emission tomography. Outcome measures were acquired at baseline in the follicular phase (cycle day 6.6 ± 2.2) and at follow-up (16.2 ± 2.6 days after intervention start). RESULTS Sex hormone manipulation with GnRHa significantly triggered subclinical depressive symptoms within-group (p = .003) and relative to placebo (p = .02), which were positively associated with net decreases in estradiol levels (p = .02) from baseline within the GnRHa group. Depressive symptoms were associated with increases in neocortical SERT binding in the GnRHa group relative to placebo (p = .003). CONCLUSIONS Our data imply both serotonergic signaling and estradiol in the mechanisms by which sex-steroid hormone fluctuations provoke depressive symptoms and thus provide a rationale for future preventive strategies in high-risk groups.
NeuroImage | 2009
Ron Kupers; V.G. Frokjaer; Arne Naert; Rune Christensen; Esben Budtz-Joergensen; Henrik Kehlet; Gitte M. Knudsen
There is a large body of evidence that serotonin [5-hydroxytryptamine (5-HT)] plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) to study the relationship between baseline 5-HT(2A) binding in the brain and responses to noxious heat stimulation in a group of young healthy volunteers. Twenty-one healthy subjects underwent PET scanning with the 5-HT(2A) antagonist, [(18)F]altanserin. In addition, participants underwent a battery of pain tests using noxious heat stimulation to assess pain threshold, pain tolerance and response to short-lasting phasic and long-lasting (7-minute) tonic painful stimulation. Significant positive correlations were found between tonic pain ratings and [(18)F]altanserin binding in orbitofrontal (r=0.66; p=0.005), medial inferior frontal (r=0.60; p=0.014), primary sensory-motor (r=0.61; p=0.012) and posterior cingulate (r=0.63; p=0.009) cortices. In contrast, measures of regional [(18)F]altanserin binding did not correlate with pain threshold, pain tolerance, or suprathreshold phasic pain responses. These data suggest that cortical 5-HT(2A) receptor availability co-varies with responses to tonic pain. The correlation between [(18)F]altanserin binding in prefrontal cortex and tonic pain suggests a possible role of this brain region in the modulation and/or cognitive-evaluative appreciation of pain.
European Neuropsychopharmacology | 2013
V.G. Frokjaer; David Erritzoe; Klaus K. Holst; Peter S. Jensen; Peter Mondrup Rasmussen; Patrick M. Fisher; William F.C. Baaré; Kathrine Skak Madsen; Jacob Madsen; Claus Svarer; Gitte M. Knudsen
UNLABELLED Stress sensitivity and serotonergic neurotransmission interact, e.g. individuals carrying the low-expressing variants (S and LG) of the 5-HTTLPR promoter polymorphism of the serotonin transporter (SERT) gene are at higher risk for developing mood disorders when exposed to severe stress and display higher cortisol responses when exposed to psychosocial stressors relative to high expressing 5-HTTLPR variants. However, it is not clear how the relation between SERT and cortisol output is reflected in the adult brain. We investigated the relation between cortisol response to awakening (CAR) and SERT binding in brain regions considered relevant to modify the cortisol awakening response. METHODS thirty-two healthy volunteers underwent in vivo SERT imaging with [(11)C]DASB-Positron Emission Tomography (PET), genotyping, and performed home-sampling of saliva to assess CAR. RESULTS CAR, defined as the area under curve with respect to increase from baseline, was positively coupled to prefrontal SERT binding (p=0.02), independent of adjustment for 5-HTTLPR genotype. Although S- and LG-allele carriers tended to show a larger CAR (p=0.07) than LA homozygous, 5-HTTLPR genotype did not modify the coupling between CAR and prefrontal SERT binding as tested by an interaction analysis (genotype×CAR). CONCLUSION prefrontal SERT binding is positively associated with cortisol response to awakening. We speculate that in mentally healthy individuals prefrontal serotonergic neurotransmission may exert an inhibitory control on the cortisol awakening response.
NeuroImage | 2011
Ron Kupers; V.G. Frokjaer; David Erritzoe; Arne Naert; Esben Budtz-Joergensen; Finn Årup Nielsen; Henrik Kehlet; Gitte M. Knudsen
There is a large body of evidence that the serotonergic system plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) with the serotonin transporter (SERT) tracer [(11)C]DASB to study the relationship between SERT binding in the brain and responses to noxious heat stimulation in a group of 21 young healthy volunteers. Responses to noxious heat stimuli were assessed in a separate psychophysical experiment and included measurements of pain threshold, pain tolerance, and responses to phasic noxious heat stimuli and to a long lasting (7-minute) tonic noxious heat stimulus. PET data were analyzed using both volume-of-interest (VOI) and voxel-based approaches. VOI analysis revealed a significant negative correlation between tonic pain ratings and SERT binding in the hypothalamus (r=-0.59; p=0.008), a finding confirmed by the parametric analysis. The parametric analysis also revealed a negative correlation between tonic pain ratings and SERT binding in the right anterior insula. Measures of regional SERT binding did not correlate with pain threshold or with responses to short phasic suprathreshold phasic heat stimuli. Finally, the VOI analysis revealed a positive correlation between pain tolerance and SERT binding in the hypothalamus (r=0.53; p=0.02) although this was not seen in the parametric analysis. These data extend our earlier observation that cortical 5-HT receptors co-determine responses to tonic but not to phasic pain. The negative correlation between SERT binding in the hypothalamus and insula with tonic pain ratings suggests a possible serotonergic control of the role of these areas in the modulation or in the affective appreciation of pain.
Neuropsychopharmacology | 2015
Patrick M. Fisher; Mette E. Haahr; Christian Gaden Jensen; V.G. Frokjaer; Hartwig R. Siebner; Gitte M. Knudsen
Serotonin critically affects the neural processing of emotionally salient stimuli, including indices of threat; however, how alterations in serotonin signaling contribute to changes in brain function is not well understood. Recently, we showed in a placebo-controlled study of 32 healthy males that brain serotonin 4 receptor (5-HT4) binding, assessed with [11C]SB207145 PET, was sensitive to a 3-week intervention with the selective serotonin reuptake inhibitor fluoxetine, supporting it as an in vivo model for fluctuations in central serotonin levels. Participants also underwent functional magnetic resonance imaging while performing a gender discrimination task of fearful, angry, and neutral faces. This offered a unique opportunity to evaluate whether individual fluctuations in central serotonin levels, indexed by change in [11C]SB207145 binding, predicted changes in threat-related reactivity (ie, fear and angry vs neutral faces) within a corticolimbic circuit including the amygdala and medial prefrontal and anterior cingulate cortex. We observed a significant association such that decreased brain-wide [11C]SB207145 binding (ie, increased brain serotonin levels) was associated with lower threat-related amygdala reactivity, whereas intervention group status did not predict change in corticolimbic reactivity. This suggests that in the healthy brain, interindividual responses to pharmacologically induced and spontaneously occurring fluctuations in [11C]SB207145 binding, a putative marker of brain serotonin levels, affect amygdala reactivity to threat. Our finding also supports that change in brain [11C]SB207145 binding may be a relevant marker for evaluating neurobiological mechanisms underlying sensitivity to threat and serotonin signaling.
Neuroscience | 2009
V.G. Frokjaer; David Erritzoe; Joseph R. Madsen; Olaf B. Paulson; Gitte M. Knudsen
Gender influences brain function including serotonergic neurotransmission, which may play a role in the well-known gender variations in vulnerability to mood and anxiety disorders. Even though hormonal replacement therapy in menopause is associated with globally increased cerebral 5-HT(2A) receptor binding it is not clear if gender or use of hormonal contraception exhibits associations with 5-HT(2A) receptor binding. We found no significant effect of gender on cortical 5-HT(2A) receptor binding (P=0.15, n=132). When adjusting for the personality trait neuroticism, known to be positively correlated to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0.31). In conclusion, neither gender, nor the use of hormonal contraception in premenopausal women was associated with cortical 5-HT(2A) receptor binding.
Translational Psychiatry | 2015
Susanne Henningsson; Kristoffer Hougaard Madsen; Anja Pinborg; M. Heede; Gitte M. Knudsen; Hartwig R. Siebner; V.G. Frokjaer
Sex-hormone fluctuations may increase risk for developing depressive symptoms and alter emotional processing as supported by observations in menopausal and pre- to postpartum transition. In this double-blinded, placebo-controlled study, we used blood−oxygen level dependent functional magnetic resonance imaging (fMRI) to investigate if sex-steroid hormone manipulation with a gonadotropin-releasing hormone agonist (GnRHa) influences emotional processing. Fifty-six healthy women were investigated twice: at baseline (follicular phase of menstrual cycle) and 16±3 days post intervention. At both sessions, fMRI-scans during exposure to faces expressing fear, anger, happiness or no emotion, depressive symptom scores and estradiol levels were acquired. The fMRI analyses focused on regions of interest for emotional processing. As expected, GnRHa initially increased and subsequently reduced estradiol to menopausal levels, which was accompanied by an increase in subclinical depressive symptoms relative to placebo. Women who displayed larger GnRHa-induced increase in depressive symptoms had a larger increase in both negative and positive emotion-elicited activity in the anterior insula. When considering the post-GnRHa scan only, depressive responses were associated with emotion-elicited activity in the anterior insula and amygdala. The effect on regional activity in anterior insula was not associated with the estradiol net decline, only by the GnRHa-induced changes in mood. Our data implicate enhanced insula recruitment during emotional processing in the emergence of depressive symptoms following sex-hormone fluctuations. This may correspond to the emotional hypersensitivity frequently experienced by women postpartum.