V. G. Korolev
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. G. Korolev.
DNA Repair | 2002
S.Yu. Alekseev; S.V. Kovaltsova; Irina V. Fedorova; Ludmila M. Gracheva; T.A. Evstukhina; V.T. Peshekhonov; V. G. Korolev
We have previously reported about a new Saccharomyces cerevisiae mutation, hsm2-1, that results in increase of both spontaneous and UV-induced mutation frequencies but does not alter UV-sensitivity. Now HSM2 gene has been genetically and physically mapped and identified as a gene previously characterized as HMO1, a yeast homologue of human high mobility group genes HMG1/2. We found that hsm2 mutant is slightly deficient in plasmid-borne mismatch repair. We tested UV-induced mutagenesis in double mutants carrying hsm2-1 mutation and a mutation in a gene of principal damaged DNA repair pathways (rad2 and rev3) or in a mismatch repair gene (pms1 and recently characterized in our laboratory hsm3). The frequency of UV-induced mutations in hsm2 rev3 was not altered in comparison with single rev3 mutant. In contrast, the interaction of hsm2-1 with rad2 and pms1 was characterized by an increased frequency of UV-induced mutations in comparison with single rad2 and pms1 mutants. The UV-induced mutation frequency in double hsm2 hsm3 mutant was lower than in the single hsm2 and hsm3 mutants. The role of the HSM2 gene product in control of mutagenesis is discussed.
Current Genetics | 1995
Olga V. Chepurnaya; Serguey A. Kozhin; Vjacheslav T. Peshekhonov; V. G. Korolev
The RAD58 (XRS4) gene of Saccharomyces cerevisiae has been previously identified as a DNA repair gene. In this communication, we show that RAD58 also encodes an essential meiotic function. The spore inviability of rad58 strains is not rescued by a spo13 mutation. The rad50 mutation suppresses spore inviability of a spo13 rad58 strain suggesting that RAD58 acts after RAD50 in meiotic recombination. The rad58-4 mutation does not prevent mitotic recombination events. Haploid rad58 cells fail to carry out G2-repair of gamma-induced lesions, whereas rad58/rad58 diploids are able to perform some diploid-specific repair of these lesions.
Current Genetics | 2008
F. K. Khasanov; A. F. Salakhova; Olga S. Khasanova; Alexandra L. Grishchuk; Olga V. Chepurnaja; V. G. Korolev; Juerg Kohli; V. I. Bashkirov
DNA double-strand break (DSB) repair mediated by the Rad51 pathway of homologous recombination is conserved in eukaryotes. In yeast, Rad51 paralogs, Saccharomyces cerevisiae Rad55–Rad57 and Schizosaccharomyces pombe Rhp55–Rhp57, are mediators of Rad51 nucleoprotein formation. The recently discovered S. pombe Sfr1/Dds20 protein has been shown to interact with Rad51 and to operate in the Rad51-dependent DSB repair pathway in parallel to the paralog-mediated pathway. Here we show that Sfr1 is a nuclear protein and acts downstream of Rad50 in DSB processing. sfr1Δ is epistatic to rad18− and rad60−, and Sfr1 is a high-copy suppressor of the replication and repair defects of a rad60 mutant. Sfr1 functions in a Cds1-independent UV damage tolerance mechanism. In contrast to mitotic recombination, meiotic recombination is significantly reduced in sfr1Δ strains. Our data indicate that Sfr1 acts in DSB repair mainly outside of S-phase, and is required for wild-type levels of meiotic recombination. We suggest that Sfr1 acts early in recombination and has a specific role in Rad51 filament assembly, distinct from that of the Rad51 paralogs.
Russian Journal of Genetics | 2005
A. F. Salakhova; G. V. Savchenko; F. K. Khasanov; O. V. Chepurnaya; V. G. Korolev; V. I. Bashkirov
Repair of DNA double-strand break (DSB) is an evolutionary conserved Rad51-mediated mechanism. In yeasts, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57 are mediators of the nucleoprotein Rad51 filament formation. As shown in this work, a novel Rad51Sp-dependent pathway of DSB repair acts in S. pombe parallel to the pathway mediated by Rad51 paralogs. A new gene dds20+ that controls this pathway was identified. The overexpression of dds20+ partially suppresses defects of mutant rhp55Δ in DNA repair. Cells of dds20Δ manifest hypersensitivity to a variety of genotoxins. Epistatic analysis revealed that dds20+ is a gene of the recombinational repair group. The role of Dds20 in repair of spontaneous damages occurring in the process of replication and mating-type switching remains unclear. The results obtained suggest that Dds20 has functions beyond the mitotic S phase. The Dds20 protein physically interacts with Rhp51(Rad51Sp). Dds20 is assumed to operate at early recombinational stages and to play a specific role in the Rad51 protein filament assembly differing from that of Rad51 paralogs.
Russian Journal of Genetics | 2010
A. Yu. Chernenkov; S. V. Ivanova; S. V. Kovaltzova; L. M. Gracheva; V. T. Peshekhonov; I. V. Fedorova; V. G. Korolev
Gene HSM3 encodes the Hsm3 protein involved in the minor branch in the system responsible for the correction of mismatched bases in DNA structure and controls replicative and reparative spontaneous mutagenesis in yeast Saccharomyces cerevisiae. Spontaneous and UV-induced mutagenesis was studied in three mutant alleles of gene HSM3, and repair effectivity of artificial heteroduplexes was assessed in DNA molecule. The resuts of these studies allowed establishment of the protein domain structure of protein Hsm3 and functions of each domain: the N-terminal domain is responsible for binding to mispaired bases, and the C-terminal domain ensures the interaction with other proteins involved in the system of mismatched base correction.
Russian Journal of Genetics | 2007
S. V. Kovaltsova; A. Yu. Chernenkov; V. G. Korolev
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants him1, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The him1 and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.
Russian Journal of Genetics | 2010
D. V. Fedorov; S. V. Kovaltzova; V. T. Peshekhonov; V. G. Korolev
The yeast genes IXR1 and HMO1 encode proteins belonging to the family of chromatin nonhistone proteins, which are able to recognize and bind to irregular DNA structures. The full deletion of gene IXR1 leads to an increase in cell resistance to the lethal action of UV light, γ-rays, and MMS, increases spontaneous mutagenesis and significantlly decreases the level of UV-induced mutations. It was earlier demonstrated in our works that the hmo1 mutation renders cells sensitive to the lethal action of cisplatin and virtually does not affect the sensitivity to UV light. Characteristically, the rates of spontaneous and UV-induced mutagenesis in the mutant are increased. Epistatic analysis of the double mutation hmo1 ixr1 demonstrated that the interaction of these genes in relation to the lethal effect of cisplatin and UV light, as well as UV-induced mutagenesis, is additive. This suggests that the products of genes HMO1 and IXR1 participate in different repair pathways. The ixr1 mutation significantly increases the rate of spontaneous mutagenesis mediated by replication errors, whereas mutation hmo1 increases the rate of repair mutagenesis. In wild-type cells, the level of spontaneous mutagenesis was nearly one order of magnitude lower than that obtained in cells of the double mutant. Consequently, the combined activity of the Hmo1 and the Ixr1 proteins provides efficient correction of both repair and replication errors.
Russian Journal of Genetics | 2010
V. F. Latypov; T. N. Kozhina; S. A. Kozhin; V. G. Korolev
This work provides evidence that the product of the RDH54 gene participates in the coordination of some repair pathways of DNA lesions. The unique point mutation rdh54–29 described in our previous works confers the phenotype markedly differing from that of the strain with a full deletion of gene RDH54. The epistatic type of interaction between mutations rdh 54–29 and apn 1Δ allowed the product of gene RDH54 to be attributed to the base excision repair pathway. However, a pleiotropic effect of mutation rdh54–29 manifested as sensitivity to a wide spectrum of DNA-damagi ng agents suggests that Rdh54 is involved in the regulation of several DNA repair pathways. To verify this hypothesis, the direct influence of mutation rdh54–29 on recombination and mutagenesis was evaluated. The results obtained led to the assumption that, in addition to the involvement in base excision repair, Rdh54p may play a certain role in the coordination of DNA lesion repair by various systems, including recombinational and mutagenic repair pathways or nucleotide excision repair. This function supposedly is mediated through modification of chromatin structure at the location of DNA lesion, in particular, by alleviation of DNA-hi stone bonds, thus rendering DNA more susceptible to the action of various repair proteins.
Russian Journal of Genetics | 2008
S. V. Kovaltsova; I. V. Fedorova; L. M. Gracheva; S. A. Mashistov; V. G. Korolev
Geptrong is a medication from pure defermentated honey. In medical practice, it is used as hepatoprotector. Genotoxicity analysis revealed antimutagenic activity of the preparation. The spontaneous mutation rate at the ADE4-ADE8 and CAN1 loci was several times lower in case that the yeast cells were plated on the geptrong-containing medium, and the mutation rate was scored using the method of ordered plating. If spontaneous mutation rate was measured by means of the fluctuation method of median, no antimutagenic activity was detected. Geptrong had no effect on the yeast cell survival. At the same time, it substantially decreased the frequency of direct mutations at the ADE4-ADE8 locus, induced by UV-and gamma-radiation, and ethylmetansulfonate. The effect of the geptrong antimutagenic activity on the level of UV-induced mutagenesis in the yeast strains defective for the repair systems rad2, rad51, rad54, rad59, msh2, and hsm3 was examined. Antimutagenic activity was detected in the wild type, as well as in the rad2, rad54, rad59, and hsm3 strains, while rad51, pms1, and msh2 mutants lacked this activity. Based on these data, it is suggested that antimutagenic effect of geptrong is associated with activated repair of mismatches, appeared during the postreplicative recombination repair.
Russian Journal of Genetics | 2014
I. Yu. Lebovka; T. N. Kozhina; I. V. Fedorova; V. T. Peshekhonov; T. A. Evstyukhina; A. Yu. Chernenkov; V. G. Korolev
SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shown that RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion of the SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to the malfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.