V. Glaser
CERN
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Glaser.
Communications in Mathematical Physics | 1978
Sidney Richard Coleman; V. Glaser; Andre Martin
We show that for a wide class of Euclidean scalar field equations, there exist non-trivial solutions, and the non-trivial solution of lowest action is spherically symmetric. This fills a gap in a recent analysis of vacuum decay by one of us.
Communications in Mathematical Physics | 1965
J. Bros; Henri Epstein; V. Glaser
In the framework of the ℒ.l.Z. formalism, the crossing property is proved on the mass shell for amplitudes involving two incoming and two outgoing stable particles with arbitrary masses. Any couple of physical regions in the (s, t, u)-plane corresponding to crossed processes are shown to be connected by a certain domain of analyticity. For every negative value oft, the amplitude is analytic in the cuts-plane outside of a large circle.
Il Nuovo Cimento | 1964
J. Bros; H. Epstein; V. Glaser
SummaryGeometrical methods of analytic completion are used to enlarge the primitive domain of analyticity of the four-point function inp-space. The results imply, in particular, analyticity of the scattering amplitude in two variables, on the mass shell, near all physical points, as well as analyticity of partial-wave amplitudes ins near the physical points of the right-hand side cut.RiassuntoSi usano i metodi geometrici di completamento analitico per ampliare il primitivo dominio di analiticità della funzione di quattro punti nello spaziop. I risultati implicano, in particolare, l’analiticità dell’ampiezza di scattering rispetto a due variabili, sul guscio della massa, in prossimità di tutti i punti fisici, ed anche l’analiticità delle ampiezze dell’onda parziale ins presso tutti i punti del taglio del lato destro.
Communications in Mathematical Physics | 1967
J. Bros; H. Epstein; V. Glaser
We prove a conjecture ofR. Streater [1] on the finite covariance of functions holomorphic in the extended tube which are Laplace transforms of two tempered distributions with supports in the future and past cones. A new, slightly more general proof is given for a theorem of analytic completion of [1].
Communications in Mathematical Physics | 1969
H. Epstein; V. Glaser; Andre Martin
AbstractIt is shown that, in theories of exactly localized observables, of the type proposed byAraki andHaag, the reaction amplitude for two particles giving two particles is polynomially bounded ins for fixed momentum transfert<0. The proof does not need observables localized in space-time regions of arbitrarily small volume, but uses relativistic invariance in an essential way. It is given for the case of spinless neutral particles, but is easily extendable to all cases of charge and spin. The proof can also be generalized to the case of particles described by regularized products
Il Nuovo Cimento | 1958
V. Glaser
Communications in Mathematical Physics | 1974
V. Glaser
\int {\varphi (x_1 ,..., x_n ) \phi _1 } (x - x_1 ) ... \phi _n (x - x_n )dx_1 ...dx_n
Communications in Mathematical Physics | 1978
V. Glaser; Harald Grosse; Andre Martin
Communications in Mathematical Physics | 1984
Pierre Collet; Jean-Pierre Eckmann; V. Glaser; Andre Martin
ofWightman orJaffe fields.
Communications in Mathematical Physics | 1981
Henri Epstein; V. Glaser; D. Iagolnitzer
SummaryThe two-dimensional model of a relativistic theory proposed recently byW. Thirring (1) is solved by displaying the field operator ψ as an explicit functional of the corresponding incoming field. TheS-matrix (without external sources) is found to be of the form,S=exp [iQ1Q2, where Q1,2 are two constants of the motion. TheS-matrix is unitary, but gives rise only to a relative change of phase of the plane waves associated with the colliding particles, all the cross-sections being equal to zero (2). After the renormalization, all the matrix elements of the field operator turn out to be finite analytic functions of the coupling constant. An apparent discrepancy with the results ofThirring (*) is discussed.RiassuntoSi risolve il modello bidimensionale di una teoria relat.ivistica recentemente proposta daW. E. Thirring (1) sviluppando l’operatore di campo ψ come funzionale esplicito del corrispondente campo entrante. Si t.rova che la matriceS (senza sorgenti esterne) è della formaS = exp [iQ1Q2], doveQ12 sono due costanti del moto. La matriceS è unitaria, ma dà luogo solo ad un cambiamento relativo di fase delie onde piane associate alle particelle che collidono, tutte le sezioni d’urto essendo uguali a zero (2) Dopo la rinormalizzazione tutti gli elementi di matrice dell’operatore di campo risultano funzioni analitche, finite della costante di accoppiamento. Si discute un’apparente discrepanza coi risultati diThirring (1).