V. I. Tret'yakov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. I. Tret'yakov.
Science | 2010
I. G. Mitrofanov; A. B. Sanin; William V. Boynton; G. Chin; James B. Garvin; D. V. Golovin; Larry G. Evans; K. Harshman; A. S. Kozyrev; M. L. Litvak; A. Malakhov; Erwan Mazarico; Timothy P. McClanahan; G. M. Milikh; M. I. Mokrousov; G. Nandikotkur; Gregory A. Neumann; I. Nuzhdin; R. Z. Sagdeev; V.V. Shevchenko; V. N. Shvetsov; David E. Smith; Richard D. Starr; V. I. Tret'yakov; J. Trombka; D. A. Usikov; A. Varenikov; A. A. Vostrukhin; Maria T. Zuber
Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. Hydrogen has been inferred to occur in enhanced concentrations within permanently shadowed regions and, hence, the coldest areas of the lunar poles. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to detect hydrogen-bearing volatiles directly. Neutron flux measurements of the Moon’s south polar region from the Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) spacecraft were used to select the optimal impact site for LCROSS. LEND data show several regions where the epithermal neutron flux from the surface is suppressed, which is indicative of enhanced hydrogen content. These regions are not spatially coincident with permanently shadowed regions of the Moon. The LCROSS impact site inside the Cabeus crater demonstrates the highest hydrogen concentration in the lunar south polar region, corresponding to an estimated content of 0.5 to 4.0% water ice by weight, depending on the thickness of any overlying dry regolith layer. The distribution of hydrogen across the region is consistent with buried water ice from cometary impacts, hydrogen implantation from the solar wind, and/or other as yet unknown sources.
Solar System Research | 2004
I. G. Mitrofanov; M. L. Litvak; A. S. Kozyrev; A. B. Sanin; V. I. Tret'yakov; V. Yu. Grinkov; William V. Boynton; C. Shinohara; David K. Hamara; R. S. Saunders
We present the results of 20 months of observations of Mars by the Russian HEND instrument onboard the NASA 2001 Mars Odyssey spacecraft. We show that there are two extended subpolar regions with a soil water content of several tens of percent in the northern and southern hemispheres of Mars. The southern subpolar region is well described by a two-layer model, according to which a soil with a water content of up to 55% by mass lies under a relatively dry soil with a water mass fraction of 2% and a thickness of 15–20 g/cm2. The distribution of water in Martian regolith northern subpolar region is in good agreement with the homogeneous model and does not require invoking the more complex two-layer soil model. The water-ice content in the subsurface layer of the northern subpolar region reaches 53 % by mass. We show that there are two regions with a relatively high water content near the Martian equator. These are Arabia Terra and the Medusae Fossae formation region southwest of Olympus Mons. In these regions, a lower layer with 9–10% of water by mass may underlie the upper layer of relatively dry material ∼30 g/cm2 in thickness. The “moistest” spot near the equator is at about 30° E and 10° N. Its lower-layer soil may contain more than 16% of water by mass.
Astrobiology | 2008
M. L. Litvak; I. G. Mitrofanov; Yu.N. Barmakov; A. Behar; A. Bitulev; Yu. Bobrovnitsky; E.P. Bogolubov; William V. Boynton; S.I. Bragin; S. Churin; A.S. Grebennikov; A.A. Konovalov; A. S. Kozyrev; I.G. Kurdumov; A.R. Krylov; Yu.P. Kuznetsov; A. Malakhov; M.I. Mokrousov; V.I. Ryzhkov; A. B. Sanin; V.N. Shvetsov; G.A. Smirnov; S. Sholeninov; G. N. Timoshenko; T.M. Tomilina; D.V. Tuvakin; V. I. Tret'yakov; V.S. Troshin; V.N. Uvarov; A. Varenikov
We present a summary of the physical principles and design of the Dynamic Albedo of Neutrons (DAN) instrument onboard NASAs 2009 Mars Science Laboratory (MSL) mission. The DAN instrument will use the method of neutron-neutron activation analysis in a space application to study the abundance and depth distribution of water in the martian subsurface along the path of the MSL rover.
Solar System Research | 2003
I. G. Mitrofanov; M. L. Litvak; A. S. Kozyrev; A. B. Sanin; V. I. Tret'yakov; William V. Boynton; C. Shinohara; David K. Hamara; S. Saunders; Darrell M. Drake
We present the first results of the global neutron mapping of Mars by the Russian High-Energy Neutron Detector (HEND) onboard the US 2001 Mars Odyssey spacecraft. Global neutron maps of Mars in various spectral ranges allow the content of water ice and adsorbed and bound water in a near-surface layer of the planet 1 to 2 m in thickness to be estimated. Huge regions of permafrost with a high (several tens of percent by weight) content of water ice are shown to be present in the north and the south of Mars. The continuous observations of Mars for 12 months, from February 18, 2002, through February 8, 2003, are indicative of significant seasonal variations on Mars where the transition from northern winter to northern summer occurred.
Solar System Research | 2004
M. L. Litvak; I. G. Mitrofanov; A. S. Kozyrev; A. B. Sanin; V. I. Tret'yakov; William V. Boynton; C. Shinohara; David K. Hamara; S. Saunders; Darrell M. Drake
We present the results of eighteen months of observations of the seasonal caps of Mars based on data from the neutron spectroscopy of the surface by the Russian HEND Instrument mounted aboard the NASA 2001 Mars Odyssey spacecraft. A four-dimensional model of the Martian seasonal caps was developed on the basis of these observation data. The model shows how the thickness of the frozen carbon dioxide changes in different surface regions. Using the results of the model, we estimated the total mass of the seasonal caps for the period of maximal accumulation of seasonal depositions and the rates of condensation and sublimation of the seasonal cover.
Journal of Geophysical Research | 2014
M. L. Litvak; I. G. Mitrofanov; A. B. Sanin; D. Lisov; A. Behar; William V. Boynton; Lauren DeFlores; F. Fedosov; D. V. Golovin; Craig Hardgrove; K. Harshman; I. Jun; A. S. Kozyrev; Ruslan O. Kuzmin; A. Malakhov; Ralph E. Milliken; M. Mischna; Jeffrey Edward Moersch; M. I. Mokrousov; V. N. Shvetsov; Kathryn M. Stack; Richard D. Starr; C. Tate; V. I. Tret'yakov; A. A. Vostrukhin
Data gathered with the Dynamic Albedo of Neutron (DAN) instrument onboard rover Curiosity were analyzed for variations in subsurface neutron flux and tested for possible correlation with local geological context. A special DAN observation campaign was executed, in which 18 adjacent DAN active measurements were acquired every 0.75–1.0 m to search for the variations of subsurface hydrogen content along a 15 m traverse across geologic contacts between the Sheepbed and Gillespie Lake members of the Yellowknife Bay formation. It was found that several subunits in Sheepbed and Gillespie Lake could be characterized with different depth distributions of water-equivalent hydrogen (WEH) and different chlorine-equivalent abundance responsible for the distribution of neutron absorption elements. The variations of the average WEH at the top 60 cm of the subsurface are estimated at up to 2–3%. Chlorine-equivalent neutron absorption abundances ranged within 0.8–1.5%. The largest difference in WEH and chlorine-equivalent neutron absorption distribution is found between Sheepbed and Gillespie Lake.
Journal of Geophysical Research | 2016
M. L. Litvak; Igor G. Mitrofanov; Craig Hardgrove; Kathryn M. Stack; A. B. Sanin; D. Lisov; William V. Boynton; F. Fedosov; D. V. Golovin; K. Harshman; Insoo Jun; A. S. Kozyrev; Ruslan O. Kuzmin; A. Malakhov; Ralph E. Milliken; Michael A. Mischna; Jeffrey Edward Moersch; M. I. Mokrousov; Richard D. Starr; C. Tate; V. I. Tret'yakov; A. A. Vostrukhin
The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron-absorbing elements, characterized as chlorine-equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the “Smooth Hummocky” unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine-equivalent concentrations of 1.5–2.5 wt % and 0.6–2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine-equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine-equivalent concentrations in the well-exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha-Particle X-ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low-temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine-equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments.
Solar System Research | 2003
M. L. Litvak; I. G. Mitrofanov; A. S. Kozyrev; A. B. Sanin; V. I. Tret'yakov; William V. Boynton; C. Shinohara; David K. Hamara; S. Saunders; Darrell M. Drake; Maria T. Zuber; David E. Smith
We analyze the flux of epithermal neutrons from the Martian surface recorded by the Russian High-Energy Neutron Detector (HEND) from February 19 through December 19, 2002. The HEND was installed onboard the NASA 2001 Mars Odyssey spacecraft and is designed to measure neutron fluxes with energies above 1 eV. Over the period of observations, statistically significant variations in the flux of epithermal (10–100 keV) neutrons were found in the northern and southern polar caps. The largest neutron-flux variations were found at subpolar latitudes, where the relative difference between the summer and winter values can reach severalfold. This correlation becomes weaker with increasing distance from the poles. Thus, the relative change in the neutron flux near the 60° parallel is slightly more than 10%. We assume that the detected variations result from the global circulation of atmospheric carbon dioxide in subpolar Martian regions. To additionally test this assumption, we compared the HEND neutron measurements onboard 2001 Mars Odyssey and the seasonal variations in the CO2-layer thickness as observed by the Mars Orbital Laser Altimeter (MOLA) onboard Mars Global Surveyor (MGS).
Astronomy Letters | 2008
Nikita Demidov; William V. Boynton; David A. Gilichinsky; Maria T. Zuber; A. S. Kozyrev; M. L. Litvak; I. G. Mitrofanov; A. B. Sanin; R. S. Saunders; David E. Smith; V. I. Tret'yakov; David K. Hamara
We jointly analyze data from the High-Energy Neutron Detector (HEND) onboard the NASA Mars Odyssey spacecraft and data from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor spacecraft. The former instrument measures the content of hydrogen (in the form of H2O or OH) in the subsurface layer of soil and the latter instrument measures the surface albedo with respect to the flux of solar energy. We have checked the presence of a correlation between these two data sets in various Martian latitude bands. A significant correlation has been found between these data at latitudes poleward of 40° in the northern hemisphere and at latitudes 40°–60° in the southern hemisphere. This correlation is interpreted as evidence for the presence of stable water ice in these regions under a dry layer of soil whose thickness is determined by the condition for equilibrium between the condensation of water from the atmosphere and its sublimation when heated by solar radiation. For these regions, we have derived an empirical relation between the flux of absorbed solar radiation and the thickness of the top dry layer. It allows the burial depth of the water ice table to be predicted with a sub-kilometer resolution based on near-infrared albedo measurements. We have found no correlation in the southern hemisphere at latitudes >60°, although neutron data also suggest that water ice is present in this region under a layer of dry soil. We conclude that the thickness of the dry layer in this region does not correspond to the equilibrium condition between the water ice table and the atmosphere.
Review of Scientific Instruments | 2016
A. S. Kozyrev; I. G. Mitrofanov; Alan Owens; F. Quarati; J. Benkhoff; B.N. Bakhtin; F. Fedosov; D. V. Golovin; M. L. Litvak; A. Malakhov; M. I. Mokrousov; I. O. Nuzhdin; A. B. Sanin; V. I. Tret'yakov; A. A. Vostrukhin; G. N. Timoshenko; V. N. Shvetsov; Carlos Granja; T. Slavicek; S. Pospisil
The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESAs BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.