V.J. Pereira
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V.J. Pereira.
Water Research | 2010
Sandra Sanches; Maria Teresa Barreto Crespo; V.J. Pereira
This study reports the efficiency of low pressure UV photolysis for the degradation of pesticides identified as priority pollutants by the European Water Framework Directive 2000/60/EC. Direct low pressure UV photolysis and advanced oxidation processes (using hydrogen peroxide and titanium dioxide) experiments were conducted in laboratory grade water, surface water, and groundwater. LP direct photolysis using a high UV fluence (1500 mJ/cm(2)) was found to be extremely efficient to accomplish the degradation of all pesticides except isoproturon, whereas photolysis using hydrogen peroxide and titanium dioxide did not significantly enhance their removal. In all matrices tested the experimental photolysis of the pesticides followed the same trend: isoproturon degradation was negligible, alachlor, pentachlorophenol, and atrazine showed similar degradation rate constants, whereas diuron and chlorfenvinphos were highly removed. The degradation trend observed for the selected compounds followed the decadic molar absorption coefficients order with exception of isoproturon probably due to its extremely low quantum yield. Similar direct photolysis rate constants were obtained for each pesticide in the different matrices tested, showing that the water components did not significantly impact degradation. Extremely similar photolysis rate constants were also obtained in surface water for individual compounds when compared to mixtures. The model fluence and time-based rate constants reported were very similar to the direct photolysis experimental results obtained, while overestimating the advanced oxidation results. This model was used to predict how degradation of isoproturon, the most resilient compound, could be improved.
Journal of Hazardous Materials | 2013
R. Salgado; V.J. Pereira; Gilda Carvalho; R. Soeiro; Vanessa de Jesus Gaffney; Cristina M. M. Almeida; Vitor Vale Cardoso; E. C. Ferreira; Maria João Benoliel; T.A. Ternes; Adrian Oehmen; Maria A.M. Reis; J.P. Noronha
Pharmaceutical compounds such as ketoprofen, diclofenac and atenolol are frequently detected at relatively high concentrations in secondary effluents from wastewater treatment plants. Therefore, it is important to assess their transformation kinetics and intermediates in subsequent disinfection processes, such as direct ultraviolet (UV) irradiation. The photodegradation kinetics of these compounds using a medium pressure (MP) lamp was assessed in pure water, as well as in filtered and unfiltered treated wastewater. Ketoprofen had the highest time- and fluence-based rate constants in all experiments, whereas atenolol had the lowest values, which is consistent with the corresponding decadic molar absorption coefficient and quantum yield. The fluence-based rate constants of all compounds were evaluated in filtered and unfiltered wastewater matrices as well as in pure water. Furthermore, transformation products of ketoprofen, diclofenac and atenolol were identified and monitored throughout the irradiation experiments, and photodegradation pathways were proposed for each compound. This enabled the identification of persistent transformation products, which are potentially discharged from WWTP disinfection works employing UV photolysis.
Water Research | 2009
V.J. Pereira; M.C. Basílio; D. Fernandes; M. Domingues; J.M. Paiva; Maria João Benoliel; Maria Teresa Barreto Crespo; M.V. San Romão
In order to determine the occurrence of fungi in different drinking water sources and capture variability in terms of matrix composition and seasonal effects, surface water, spring water, and groundwater samples were collected in numerous sampling events. The occurrence and significance of fungi detected in the different water sources are reported and discussed in terms of colony-forming units per millilitre and by the identification of the most frequently detected isolates, at the species level, based on morphology and other phenotypic characters. All the samples were also analyzed in terms of total coliforms and Escherichia coli that are widely monitored bacteria considered as microbiology indicators of water quality. All the groundwater samples showed significantly lower levels of total coliforms, E. coli, and fungi compared to the surface and spring water samples. No significant correlations were found between the levels of fungi detected in all the matrices and the physico-chemical parameters and bacteria regularly monitored by drinking water utilities. Fifty-two fungi isolates were identified in this study, most of which have never been described to occur in water sources. The results obtained show that fungi occur widely in drinking water sources and that further studies should be conducted to address their biodegradation potential as well as if the drinking water treatment processes currently used are effective in removing these organisms and the potential secondary metabolites produced.
Water Research | 2010
V.J. Pereira; D. Fernandes; Gilda Carvalho; Maria João Benoliel; M.V. San Romão; M.T. Barreto Crespo
A comparison of different isolation techniques and culture media for detection of filamentous fungi and yeasts in the aquatic environment revealed that the use of membrane filtration with the media dichloran rose bengal chloramphenicol (DRBC) optimized fungi detection in terms of abundance and variety in three untreated water sources with very different characteristics (surface water, spring water, and groundwater). The diversity of the fungi population captured by direct DNA extraction of fungi collected by membrane filtration was compared with the isolates obtained after selective growth using different culture media through amplification of the internal transcribed spacer gene and denaturing gradient gel electrophoresis (DGGE). The Czapek-Dox agar, Sabouraud dextrose agar, and DRBC media showed closer similarities to those obtained by the uncultured biomass for the different water sources. Based on these data and the best enumeration results, DRBC is recommended for the assessment of fungi in water sources using culture-based methods. DGGE was also used to monitor temporal variations in the fungal population structure and showed that each water matrix possessed a distinct population profile as well as that changes in the fungal community can be expected in the different matrices throughout the year.
Journal of Hazardous Materials | 2011
Sandra Sanches; C. Leitão; A. Penetra; Vitor Vale Cardoso; Elisabete Ferreira; Maria João Benoliel; M.T. Barreto Crespo; V.J. Pereira
The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm(2), anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.
Science of The Total Environment | 2015
Mário S. Diniz; R. Salgado; V.J. Pereira; Gilda Carvalho; Adrian Oehmen; Maria A.M. Reis; J.P. Noronha
The occurrence of pharmaceutical compounds in wastewater treatment plants and surface waters has been detected worldwide, constituting a potential risk for aquatic ecosystems. Adult zebrafish, of both sexes, were exposed to three common pharmaceutical compounds (atenolol, ketoprofen and diclofenac) and their UV photolysis by-products over seven days. The results show that diclofenac was removed to concentrations<LOD after 5 min of UV irradiation. The oxidative stress response of zebrafish to pharmaceuticals and their photolysis by-products was evaluated through oxidative stress enzymes (glutathione-S-transferase, catalase, superoxide dismutase) and lipid peroxidation. Results suggest that the photolysis by-products of diclofenac were more toxic than those from the other compounds tested, showing an increase in GST and CAT levels, which are also supported by higher MDA levels. Overall, the toxicity of waters containing atenolol and ketoprofen was reduced after the parent compounds were transformed by photolysis, whereas the toxicity increased significantly from the by-products generated through diclofenac photolysis. Therefore, diclofenac photolysis would possibly necessitate higher irradiation time to ensure that the associated by-products are completely degraded to harmless form(s).
Water Research | 2013
V.J. Pereira; Rui Cunha Marques; M. Marques; Maria João Benoliel; M.T. Barreto Crespo
The effectiveness of free chlorine for the inactivation of fungi present in settled surface water was tested. In addition, free chlorine inactivation rate constants of Cladosporium tenuissimum, Cladosporium cladosporioides, Phoma glomerata, Aspergillus terreus, Aspergillus fumigatus, Penicillium griseofulvum, and Penicillium citrinum that were found to occur in different source waters were determined in different water matrices (laboratory grade water and settled water). The effect of using different disinfectant concentrations (1 and 3 mg/l), temperatures (21 and 4 °C), and pH levels (6 and 7) was addressed. The sensitivity degree of different fungi isolates to chlorine disinfection varied among different genera with some species showing a higher resistance to disinfection and others expected to be more prone to protection from inactivation by the water matrix components. When the disinfection efficiency measured in terms of the chlorine concentration and contact time (Ct) values needed to achieve 99% inactivation were compared with the Ct values reported as being able to achieve the same degree of inactivation of other microorganisms, fungi were found to be more resistant to chlorine inactivation than bacteria and viruses and less resistant than Cryptosporidium oocysts.
Food Chemistry | 2015
A.T. Mata; João Pedro Ferreira; B.R. Oliveira; Maria Camila Batoréu; M.T. Barreto Crespo; V.J. Pereira; Maria R. Bronze
The presence of mycotoxins in food samples has been widely studied as well as its impact in human health, however, information about its distribution in the environment is scarce. An analytical method comprising a solid phase extraction procedure followed by liquid chromatography tandem mass spectrometry analysis was implemented and validated for the trace analysis of mycotoxins in drinking bottled waters. Limits of quantification achieved for the method were between 0.2ngL(-1) for aflatoxins and ochratoxin, and 2.0ngL(-1) for fumonisins and neosolaniol. The method was applied to real samples. Aflatoxin B2 was the most frequently detected mycotoxin in water samples, with a maximum concentration of 0.48±0.05ngL(-1) followed by aflatoxin B1, aflatoxin G1 and ochratoxin A. The genera Cladosporium, Fusarium and Penicillium were the fungi more frequently detected. These results show that the consumption of these waters does not represent a toxicological risk for an adult.
Water Research | 2013
B.R. Oliveira; M.T. Barreto Crespo; M.V. San Romão; Maria João Benoliel; Robert A. Samson; V.J. Pereira
Fungi are known to occur ubiquitously in the environment. In the past years, the occurrence of filamentous fungi in the aquatic environment has been a subject of growing interest. This study describes the occurrence of various fungal genera in different drinking water sources being Penicillium and Trichoderma the most representative ones (30% and 17%, respectively). Also, 24 fungal species that have not been previously described in the aquatic environment are reported in this study, being once again the major species from the Penicillium genera. This study therefore contributes to the knowledge on the richness of fungi diversity in water. 68% of the described species were found to be able to grow at 30 °C but only Aspergillus fumigatus, Aspergillus viridinutans and Cunninghamella bertholletiae were able to grow at the higher temperature tested (42 °C). 66% of the species that were able to grow at 30 °C have spore sizes below 5 μm which enables them to cause breathing infections. These were therefore identified as potential pathogenic species.
Environmental Science and Pollution Research | 2015
B.R. Oliveira; A. Penetra; Vitor Vale Cardoso; Maria João Benoliel; M.T. Barreto Crespo; Robert A. Samson; V.J. Pereira
Relatively limited attention has been given to the presence of fungi in the aquatic environment compared to their occurrence in other matrices. Taking advantage and recognizing the biodegradable capabilities of fungi is important, since these organisms may produce many potent enzymes capable of degrading toxic pollutants. Therefore, the aim of this study was to evaluate the potential ability of some species of filamentous fungi that occur in the aquatic environment to degrade pesticides in untreated surface water. Several laboratory-scale experiments were performed using the natural microbial population present in the aquatic environment as well as spiked fungi isolates that were found to occur in different water matrices, to test the ability of fungi to degrade several pesticides of current concern (atrazine, diuron, isoproturon and chlorfenvinphos). The results obtained in this study showed that, when spiked in sterile natural water, fungi were able to degrade chlorfenvinphos to levels below detection and unable to degrade atrazine, diuron and isoproturon. Penicillium citrinum, Aspergillus fumigatus, Aspergillus terreus and Trichoderma harzianum were found to be able to resist and degrade chlorfenvinphos. These fungi are therefore expected to play an important role in the degradation of this and other pollutants present in the aquatic environment.