Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. K. Jordanova is active.

Publication


Featured researches published by V. K. Jordanova.


Journal of Geophysical Research | 1996

Collisional losses of ring current ions

V. K. Jordanova; L. M. Kistler; Janet U. Kozyra; G. V. Khazanov; Andrew F. Nagy

The time evolution of the ring current population during the recovery phase of a typical moderate magnetic storm is studied, using a newly developed kinetic model for H+, He+ and O+ ions which includes nonequatorially mirroring particles. The bounce-averaged distribution function is defined for variables that are accessible to direct measurement, and some useful formulas for calculating the total energy and number density of the ring current are derived. The bounce-averaged kinetic equation is solved, including losses due to charge exchange with neutral hydrogen and Coulomb collisions with thermal plasma along ion drift paths. Time-dependent magnetospheric electric fields and anisotropic initial pitch angle distributions are considered. The generation of ion precipitating fluxes is addressed, a process that is still not completely understood. It is shown that both the decrease of the distribution function due to charge exchange losses and the buildup of a low-energy population caused by Coulomb collisions proceed faster for particles with smaller pitch angles. The maximum of the equatorial precipitating fluxes occurs on the nightside during the early recovery phase and is found to be of the order of 104–105 cm−2sr−1s−1keV−1. The mechanisms considered in this paper indicate that magnetospheric convection plays the predominant role in causing ion precipitation; Coulomb scattering contributes significantly to the low-energy ion precipitation inside the plasmasphere.


Journal of Geophysical Research | 2001

Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm

V. K. Jordanova; C. J. Farrugia; Richard M. Thorne; G. V. Khazanov; G. D. Reeves; M. F. Thomsen

We study mechanisms contributing to proton precipitation from the ring current during the May 14–16, 1997, geomagnetic storm. This storm was caused partly by Bz< 0 fields in the sheath region behind an interplanetary shock and partly by the magnetic cloud driving the shock. The storm was characterized by a maximum Kp=7− and a minimum Dst=−115 nT and had a distinctive two-phase decay related to the passage of the ejection at the Earth. We model the ring current development caused by adiabatic drifts and losses due to charge exchange, Coulomb collisions, wave-particle interactions, and atmospheric collisions at low altitudes. The nightside magnetospheric inflow is simulated using geosynchronous Los Alamos National Laboratory data, whereas the dayside free outflow corresponds to losses through the dayside magnetopause. We calculate the equatorial growth rate of electromagnetic ion cyclotron waves with frequencies between the oxygen and helium gyrofrequencies and their integrated wave gain as the storm progresses. The regions of maximum wave amplification compare reasonably well to satellite observations. A time-dependent global wave model is constructed, and the spatial and temporal evolution of precipitating proton fluxes during different storm phases is determined. We find that the global patterns of proton precipitation are very dynamic: located at larger L shells during prestorm conditions, moving to lower L shells as geomagnetic activity increases during storm main phase, and receding back toward larger L shells with storm recovery. However, the most intense fluxes are observed along the duskside plasmapause during the main and early recovery phase of the storm and are caused by plasma wave scattering. This study is relevant to the analysis of the anticipated new data sets from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) and Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) missions.


Geophysical Research Letters | 2008

Precipitation of radiation belt electrons by EMIC waves, observed from ground and space

Yoshizumi Miyoshi; Kaori Sakaguchi; K. Shiokawa; D. S. Evans; J. Albert; Martin Connors; V. K. Jordanova

We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970s.


Geophysical Research Letters | 1999

Analysis of early phase ring current recovery mechanisms during geomagnetic storms

Michael W. Liemohn; Janet U. Kozyra; V. K. Jordanova; G. V. Khazanov; M. F. Thomsen; Thomas E. Cayton

A time-dependent kinetic model is used to investigate the relative importance of various mechanisms in the early phase decay rate of the ring current. It is found that, for both the solar maximum storm of June 4–7, 1991 and especially the solar minimum storm of September 24–27, 1998, convective drift loss out the dayside magnetopause is the dominant process in removing ring current particles during the initial recovery. During the 1998 storm, dayside outflow losses outpaced charge exchange losses by a factor of ten.


Journal of Geophysical Research | 2010

Global simulation of magnetosonic wave instability in the storm time magnetosphere

Lunjin Chen; Richard M. Thorne; V. K. Jordanova; Richard B. Horne

Coupling between the Rice Convection Model and Ring Current-Atmospheric Interactions Model codes is used to simulate the dynamical evolution of ring current ion phase space density and the thermal electron density distribution for the 22 April 2001 storm. The simulation demonstrates that proton ring distributions (df(perpendicular to)/dv(perpendicular to) > 0) develop over a broad spatial region during the storm main phase, leading to the instability of equatorial magnetosonic waves. Calculations of the convective growth rate of magnetosonic waves for multiples of the proton gyrofrequency from 2 to 42 are performed globally. We find that the ratio between the perpendicular ring velocity and the equatorial Alfven speed determines the frequency range of unstable magnetosonic waves. Low harmonic waves (omega 20 Omega(H+)) are excited over a broad spatial region of low density outside the morningside plasmasphere


Journal of Geophysical Research | 1998

Effects of a high‐density plasma sheet on ring current development during the November 2–6, 1993, magnetic storm

Janet U. Kozyra; V. K. Jordanova; J. E. Borovsky; M. F. Thomsen; Delores J. Knipp; D. S. Evans; D. J. McComas; Thomas E. Cayton

The growth and recovery of the November 2–6, 1993 magnetic storm was simulated using a drift-loss ring current model that was driven by dynamic fluxes at geosynchronous orbit as an outer boundary condition. During the storm main phase, a high-density plasma sheet was observed by the Los Alamos National Laboratory geosynchronous satellites to move into and flow around the inner magnetosphere over a period of ∼12 hours [Borovsky et al., 1997; this issue] during the storm main phase. Densities at the leading edge of this structure reached 3 cm−3 as compared with more typical values <1 cm−3. The factor of 3 change in the plasma sheet density from quiet to active times produced a factor of 3 enhancement in the strength of the simulated ring current. In addition, a short-timescale recovery in the Dst index at 1600 UT on November 4 was driven by changes in the outer boundary condition and appeared even in the absence of collisional losses. An overshoot in the minimum Dst* occurred in the simulated ring current compared with observed values at ∼0200 UT on November 4 and is taken as evidence of a loss process not included in the ring current-atmosphere interaction model (RAM). The storm onset was associated with a compression of the entire dayside magnetopause to within geostationary orbit starting at 2307 UT and continuing for a half hour. It is suggested that a possible additional loss may have resulted as ions drifted to the compressed dayside magnetopause. In fact such losses were found in another simulation of the inner magnetosphere for the same storm by Freeman et al. [1996]. The energy supplied to the inner magnetosphere, relative to the total energy input during this magnetic storm, was examined by comparing two widely used energy input functions, the e parameter [Akasofu, 1981] and the F parameter [Burton et al., 1975] against energy input to the ring current model based on geosynchronous plasma observations at the outer boundary. It is found that the e parameter [Akasofu, 1981] overestimates the ring current energy input compared to the drift-loss model by almost an order of magnitude during the main phase. However, the integrated energy input from e, over the 4 day interval of the storm, is in very good agreement with the total energy input inferred from observations. On the other hand, F more closely approximates the magnitude of the ring current energy input alone as calculated in the drift-loss model. An energy budget is constructed for the storm that shows energy inputs from the solar wind and energy dissipation due to ring current buildup and decay, auroral electron precipitation, Joule heating, ion precipitation, and energy storage in the magnetotail in reasonable balance. The ring current energy input accounts for only 15% of the total dissipated energy in this storm interval. A more complete energy budget that extends to November 11, 1993, was compiled by Knipp et al. [this issue].


Journal of Geophysical Research | 1998

October 1995 magnetic cloud and accompanying storm activity: Ring current evolution

V. K. Jordanova; C. J. Farrugia; L. Janoo; J. M. Quinn; R. B. Torbert; K. W. Ogilvie; R. P. Lepping; J. T. Steinberg; D. J. McComas; R. D. Belian

The passage at Earth of the October 1995 magnetic cloud and the high-speed corotating stream overtaking it, monitored by the Global Geospace Science (GGS) spacecraft Wind, caused two consecutive geomagnetic storms: a major one during the strong Bz < 0 nT phase of cloud passage and a moderate one during the intermittent Bz < 0 activity in the fast corotating stream. Large dynamic pressure changes were observed in the sheath region ahead of the cloud and in the cloud-stream interface region at its rear, resulting in substantial corrections to the measured Dst index. A burst of superdense plasma sheet extending over ∼2 hours in local time was observed at geostationary orbit during the second storm. We simulate the ring current development during this storm period using our kinetic model and calculate the magnetic field perturbation caused by the ring current. The plasma inflow on the nightside is modeled throughout the investigated period using data measured at geosynchronous orbit. The modeled Dst index is compared with the observed Dst values corrected for magnetopause and telluric currents. The temporal evolution of the ring current H+ and O+ distribution functions is computed, considering losses due to charge exchange, Coulomb collisions, and ion precipitation. We find that (1) the storm time enhancement of the plasma sheet ion population contributed significantly to the ring current buildup; (2) an additional ∼12 nT decrease in Dst is achieved when the symmetry line of the plasma convection paths is rotated eastward from the dawn-dusk direction with 3 hours during the first storm; (3) the major loss process is charge exchange, followed by Coulomb collisions and ion precipitation; (4) however, the energy losses due to ion precipitation increase monotonically during the more active periods, reaching the level of Coulomb losses at peak storm intensity. We argue that the losses due to ion precipitation considered in this study are closely related to the enhanced convection electric field, which in our model is parameterized with the planetary Kp index. Correspondingly, we find that (5) there is a very good correlation between the variations in time of this index and the magnitude of the ion precipitation losses.


Journal of Geophysical Research | 2010

Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCM‐RAM‐HOTRAY modeling

Lunjin Chen; Richard M. Thorne; V. K. Jordanova; C.-P. Wang; Matina Gkioulidou; Larry R. Lyons; Richard B. Horne

The global distribution and spectral properties of electromagnetic ion cyclotron (EMIC) waves in the He+ band are simulated for the 21 April 2001 storm using a combination of three different codes: the Rice Convection Model, the Ring current-Atmospheric interactions Model, and the HOTRAY ray tracing code (incorporated with growth rate solver). During the storm main phase, injected ions exhibit a non-Maxwellian distribution with pronounced phase space density minima at energies around a few keV. Ring current H+-injected from the plasma sheet provides the source of free energy for EMIC excitation during the storm. Significant wave gain is confined to a limited spatial region inside the storm time plume and maximizes at the eastward edge of the plume in the dusk and premidnight sector. The excited waves are also able to resonate and scatter relativistic electrons, but the minimum electron resonant energy is generally above 3 MeV.


Journal of Geophysical Research | 2015

The occurrence and wave properties of H+‐, He+‐, and O+‐band EMIC waves observed by the Van Allen Probes

A. A. Saikin; J.-C. Zhang; R. C. Allen; Charles W. Smith; L. M. Kistler; Harlan E. Spence; R. B. Torbert; C. A. Kletzing; V. K. Jordanova

We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H+, He+, and O+ bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H+-band events, 438 He+-band events, and 68 O+-band events). EMIC wave events are observed between L = 2–8, with over 140 EMIC wave events observed below L = 4. Results show that H+-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: prenoon (09:00  0.1 nT2/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.


Journal of Geophysical Research | 2007

Modeling the electromagnetic ion cyclotron wave-induced formation of detached subauroral proton arcs

V. K. Jordanova; M. Spasojevic; M. F. Thomsen

[1] Detached dayside proton arcs have been recently observed at Earth with the IMAGE FUV instrument as subauroral arcs separated from the main oval and extending over several hours of local time in the afternoon sector. We investigate the mechanisms causing the proton precipitation during two subauroral arc events that occurred on 23 January 2001 and 18 June 2001. We employ our kinetic physics-based model coupled with a dynamic plasmasphere model and calculate the growth rate of electromagnetic ion cyclotron (EMIC) waves self-consistently with the evolving ring current H + ,O + , and He + ion distributions. Modeled plasmaspheric densities agree well with in situ observations from geosynchronous LANL satellites and duskside plasmapause observations from IMAGE EUV but overestimate the drainage plume extent toward noon on 18 June. Global images of precipitating H + ions are obtained and compared with IMAGE observations of proton arcs. We find that EMIC waves are preferentially excited, and proton precipitation maximizes, within regions of spatial overlap of energetic ring current protons and dayside plasmaspheric plumes and along steep density gradients at the plasmapause. The model matches very well the temporal and spatial evolution of FUV observations on 23 January. The predicted location of the proton precipitation on 18 June extends a few hours westward of the observations, and an offset of 2 hours in the convection electric field is needed to reproduce well the evolution of the proton arc. This study indicates that cyclotron resonant wave-particle interactions are a viable mechanism for the generation of subauroral proton arcs.

Collaboration


Dive into the V. K. Jordanova's collaboration.

Top Co-Authors

Avatar

M. F. Thomsen

Planetary Science Institute

View shared research outputs
Top Co-Authors

Avatar

R. B. Torbert

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

G. D. Reeves

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. G. Henderson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Zaharia

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge