Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. La Parola is active.

Publication


Featured researches published by V. La Parola.


The Astrophysical Journal | 2007

The First Survey of X-Ray Flares from Gamma-Ray Bursts Observed by Swift: Temporal Properties and Morphology

Guido Chincarini; A. Moretti; Patrizia Romano; A. Falcone; David C. Morris; Judith Lea Racusin; Sergio Campana; S. Covino; C. Guidorzi; G. Tagliaferri; D. N. Burrows; Claudio Pagani; M. C. Stroh; Dirk Grupe; Milvia Capalbi; G. Cusumano; N. Gehrels; P. Giommi; V. La Parola; Vanessa Mangano; T. Mineo; John A. Nousek; P. T. O’Brien; Kim L. Page; Matteo Perri; E. Troja; R. Willingale; Bing Zhang

We present the first systematic investigation of the morphological and timing properties of flares in GRBs observed by Swift XRT. We consider a large sample drawn from all GRBs detected by Swift, INTEGRAL, and HETE-2 prior to 2006 January 31, which had an XRT follow-up and which showed significant flaring. Our sample of 33 GRBs includes long and short, at low and high redshift, and a total of 69 flares. The strongest flares occur in the early phases, with a clear anticorrelation between the flare peak intensity and the flare time of occurrence. Fitting each X-ray flare with a Gaussian model, we find that the mean ratio of the width and peak time is --> ? t/t = 0.13 ? 0.10, albeit with a large scatter. Late flares at times >2000 s have long durations, -->? t > 300 s, and can be very energetic compared to the underlying continuum. We further investigated whether there is a clear link between the number of pulses detected in the prompt phase by BAT and the number of X-ray flares detected by XRT, finding no correlation. However, we find that the distribution of intensity ratios between successive BAT prompt pulses and that between successive XRT flares is the same, an indication of a common origin for gamma-ray pulses and X-ray flares. All evidence indicates that flares are indeed related to the workings of the central engine and, in the standard fireball scenario, originate from internal shocks rather than external shocks. While all flares can be explained by long-lasting engine activity, 29/69 flares may also be explained by refreshed shocks. However, 10 can only be explained by prolonged activity of the central engine.


Nature | 2008

Broadband observations of the naked-eye gamma-ray burst GRB 080319B

Judith Lea Racusin; S. V. Karpov; Marcin Sokolowski; Jonathan Granot; Xue-Feng Wu; V. Pal’shin; S. Covino; A. J. van der Horst; S. R. Oates; Patricia Schady; R. J. E. Smith; J. R. Cummings; Rhaana L. C. Starling; Lech Wiktor Piotrowski; Bin-Bin Zhang; P. A. Evans; S. T. Holland; K. Malek; M. T. Page; L. Vetere; R. Margutti; C. Guidorzi; Atish Kamble; P. A. Curran; A. P. Beardmore; C. Kouveliotou; Lech Mankiewicz; Andrea Melandri; P. T. O’Brien; Kim L. Page

Long-duration γ-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.


Astronomy and Astrophysics | 2010

The Palermo Swift-BAT hard X-ray catalogue - II. Results after 39 months of sky survey

G. Cusumano; V. La Parola; A. Segreto; Vanessa Mangano; C. Ferrigno; A. Maselli; Patrizia Romano; T. Mineo; Boris Sbarufatti; Sergio Campana; Guido Chincarini; P. Giommi; N. Masetti; A. Moretti; G. Tagliaferri

Aims. We present the Palermo Swift-BAT hard X-ray catalogue obtained from the analysis of data acquired during the first 39 months of the Swift mission. Methods. We developed a dedicated software to perform the data reduction, mosaicking, and source detection of the BAT survey data. We analyzed the BAT dataset in three energy bands (14−150 keV, 14−30 keV, 14−70 keV), obtaining a list of 962 detections above a significance threshold of 4.8 standard deviations. The identification of the source counterparts was pursued using three strategies: cross-correlation with published hard X-ray catalogues, analysis of field observations of soft X-ray instruments, and cross-correlation with SIMBAD databases. Results. The survey covers 90% of the sky down to a flux limit of 2.5 × 10 −11 erg cm −2 s −1 and 50% of the sky down to a flux limit of 1.8 × 10 −11 erg cm −2 s −1 in the 14−150 keV band. We derived a catalogue of 754 identified sources, of which ∼69% are extragalactic, ∼27% are Galactic objects, and ∼4% are already known X-ray or gamma ray emitters, whose nature has yet to be determined. The integrated flux of the extragalactic sample is ∼1% of the cosmic X-ray background in the 14−150 keV range.


The Astrophysical Journal | 2007

Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine

E. Troja; G. Cusumano; P. T. O’Brien; Bing Zhang; Boris Sbarufatti; Vanessa Mangano; R. Willingale; Guido Chincarini; J. P. Osborne; F. E. Marshall; D. N. Burrows; Sergio Campana; N. Gehrels; C. Guidorzi; Hans A. Krimm; V. La Parola; En-Wei Liang; T. Mineo; A. Moretti; Kim L. Page; Patrizia Romano; G. Tagliaferri; Bin-Bin Zhang; M. J. Page; Patricia Schady

We present a detailed analysis of Swift multiwavelength observations of GRB 070110 and its remarkable afterglow. The early X-ray light curve, interpreted as the tail of the prompt emission, displays a spectral evolution already seen in other gamma-ray bursts. The optical afterglow shows a shallow decay up to similar to 2 days after the burst, which is not consistent with standard afterglow models. The most intriguing feature is a very steep decay in the X-ray flux at similar to 2 x 10(4) s after the burst, ending an apparent plateau. The abrupt drop of the X-ray light curve rules out an external shock as the origin of the plateau in this burst and implies long-lasting activity of the central engine. The temporal and spectral properties of the plateau phase point toward a continuous central engine emission rather than the episodic emission of X-ray flares. We suggest that the observed X-ray plateau is powered by a spinning-down central engine, possibly a millisecond pulsar, which dissipates energy at an internal radius before depositing energy into the external shock.


Applied Catalysis A-general | 2003

Activity of SiO2 supported gold-palladium catalysts in CO oxidation

Anna Maria Venezia; Leonarda F. Liotta; G. Pantaleo; V. La Parola; G. Deganello; A. Beck; Zs. Koppány; Krisztina Frey; D Horváth; L. Guczi

Abstract Bimetallic Au-Pd catalysts supported on silica with different Au/Pd atomic ratios were prepared by simultaneous reduction of palladium and gold precursors by ethanol in the presence of the polymer, polyvinylpyrrolidone (PVP). Formation of alloyed particles was detected by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and CO chemisorption measurements. The catalysts were tested in the catalytic oxidation of CO using a plug–flow reactor. The CO conversion was determined as a function of temperature. The monometallic palladium and the palladium-rich catalysts behaved quite similarly and were the most active catalysts. A drastic reduction of the CO oxidation activity was observed for the 50/50 Au/Pd catalyst and for samples with increasing amount of gold.


The Astrophysical Journal | 2006

SWIFT OBSERVATIONS OF THE X-RAY-BRIGHT GRB 050315

S. Vaughan; Mike R. Goad; A. P. Beardmore; P. T. O’Brien; Julian P. Osborne; Kim L. Page; S. D. Barthelmy; David N. Burrows; Sergio Campana; John K. Cannizzo; Milvia Capalbi; Guido Chincarini; J. R. Cummings; G. Cusumano; P. Giommi; Olivier Godet; J. E. Hill; Shiho Kobayashi; Pawan Kumar; V. La Parola; Andrew J. Levan; Vanessa Mangano; P. Meszaros; A. Moretti; David C. Morris; John A. Nousek; Claudio Pagani; David M. Palmer; Judith Lea Racusin; Patrizia Romano

This paper discusses Swift observations of the � -ray burst GRB 050315 (z ¼ 1:949) from 80 s to 10 days after the onset of the burst. The X-ray light curve displayed a steep early decay (t � 5 ) for � 200 s and several breaks. However, both the prompt hard X-ray/� -ray emission (observed by the BAT) and the first � 300 s of X-ray emission (observed bytheXRT)canbeexplainedbyexponentialdecays,withsimilardecayconstants.ExtrapolatingtheBATlightcurve into the XRT band suggests that the rapidly decaying, early X-ray emission was simply a continuation of the fading promptemission;thisstrongsimilaritybetweentheprompt � -rayandearlyX-rayemissionmayberelatedtothesimple temporal and spectral character of this X-ray–rich GRB. Theprompt (BAT) spectrum was steep down to � 15keVand appeared to continue through the XRT bandpass, implying a low peak energy, inconsistent with the Amati relation. Following the initial steep decline, the X-ray afterglow did not fade for � 1:2 ; 10 4 s, after which time it decayed with at emporal index of� � 0:7, followed by a second break at � 2:5 ; 10 5 s to a slope of � � 2. The apparent ‘‘plateau’’ in the X-raylight curve, after the early rapid decay, makes this one of the most extreme examples of the steep-flat-steep X-ray light curves revealed by Swift. If the second afterglow break is identified with a jet break, then the jet opening


The Astrophysical Journal | 2006

The Giant X-Ray Flare of GRB 050502B: Evidence for Late-Time Internal Engine Activity

A. Falcone; D. N. Burrows; Davide Lazzati; Sergio Campana; Shiho Kobayashi; Bing Zhang; P. Meszaros; Kim L. Page; J. A. Kennea; Patrizia Romano; Claudio Pagani; L. Angelini; A. P. Beardmore; Milvia Capalbi; Guido Chincarini; G. Cusumano; P. Giommi; Mike R. Goad; Olivier Godet; Dirk Grupe; J. E. Hill; V. La Parola; Vanessa Mangano; A. Moretti; John A. Nousek; P. T. O’Brien; Julian P. Osborne; Matteo Perri; Gianpiero Tagliaferri; Alan A. Wells

Until recently, X-ray flares during the afterglow of gamma-ray bursts (GRBs) were a rarely detected phenomenon; thus, their nature is unclear. During the afterglow of GRB 050502B, the largest X-ray flare ever recorded rose rapidly above the afterglow light curve detected by the Swift X-Ray Telescope. The peak flux of the flare was >500 times that of the underlying afterglow, and it occurred >12 minutes after the nominal prompt burst emission. The fluence of this X-ray flare, (1.0 ± 0.05) × 10-6 ergs cm-2 in the 0.2-10.0 keV energy band, exceeded the fluence of the nominal prompt burst. The spectra during the flare were significantly harder than those measured before and after the flare. Later in time, there were additional flux increases detected above the underlying afterglow, as well as a break in the afterglow light curve. All evidence presented below, including spectral and, particularly, timing information during and around the giant flare, suggests that this giant flare was the result of internal dissipation of energy due to late central engine activity, rather than an afterglow-related effect. We also find that the data are consistent with a second central engine activity episode, in which the ejecta is moving slower than that of the initial episode, causing the giant flare and then proceeding to overtake and refresh the afterglow shock, thus causing additional activity at even later times in the light curve.


Astronomy and Astrophysics | 2007

Swift observations of GRB 060614: an anomalous burst with a well behaved afterglow

Vanessa Mangano; S. T. Holland; Daniele Malesani; E. Troja; Guido Chincarini; Bing Zhang; V. La Parola; Peter J. Brown; D. N. Burrows; Sergio Campana; Milvia Capalbi; G. Cusumano; M. Della Valle; N. Gehrels; P. Giommi; Dirk Grupe; C. Guidorzi; T. Mineo; A. Moretti; J. P. Osborne; S. B. Pandey; Matteo Perri; Patrizia Romano; P. W. A. Roming; G. Tagliaferri

GRB 060614 is a remarkable gamma-ray burst (GRB) observed by Swift with puzzling properties, which challenge current progenitor models. In particular, the lack of any bright supernova (SN) down to very strict limits and the vanishing spectral lags during the whole burst are typical of short GRBs, strikingly at odds with the long (102 s) duration of this event. Here we present detailed spectral and temporal analysis of the Swift observations of GRB 060614. We show that the burst presents standard optical, ultraviolet and X-ray afterglows, detected beginning 4 ks after the trigger. An achromatic break is observed simultaneously in the optical and X-ray bands, at a time consistent with the break in the R-band light curve measured by the VLT. The achromatic behaviour and the consistent postbreak decay slopes make GRB 060614 one of the best examples of a jet break for a Swift burst. The optical and ultraviolet afterglow light curves have also an earlier break at 29.7 ± 4.4 ks, marginally consistent with a corresponding break at 36.6 ± 2.4 ks observed in the X-rays. In the optical, there is strong spectral evolution around this break, suggesting the passage of a break frequency through the optical/ultraviolet band. The very blue spectrum at early times suggests this may be the injection frequency, as also supported by the trend in the light curves: rising at low frequencies, and decaying at higher energies. The early X-ray light curve (from 97 to 480 s) is well interpreted as the X-ray counterpart of the burst extended emission. Spectral analysis of the BAT and XRT data in the ∼80 s overlap time interval show that the peak energy of the burst has decreased to as low as 8 keV at the beginning of the XRT observation. Spectral analysis of following XRT data shows that the peak energy of the burst continues to decrease through the XRT energy band and exits it at about 500 s after the trigger. The average peak energy Ep of the burst is likely below the BAT energy band (<24 keV at the 90% confidence level) but larger than 8 keV. The initial group of peaks observed by BAT (∼5 s) is however distinctly harder than the rest of the prompt emission, with a peak energy of about 300 keV as measured by Konus Wind. Considering the time-averaged spectral properties, GRB 060614 is consistent with the Eiso − E rest , Eγ − E rest ,a ndLp,iso − E rest correlations.


Science | 2014

GRB 130427A: A Nearby Ordinary Monster

A. Maselli; Andrea Melandri; L. Nava; Carole G. Mundell; Nobuyuki Kawai; Sergio Campana; S. Covino; J. R. Cummings; G. Cusumano; P. A. Evans; G. Ghirlander; Gabriele Ghisellini; C. Guidorzi; Shiho Kobayashi; Paul Kuin; V. La Parola; V. Mangano; S. R. Oates; S. D. Barthelmy; Neil Gehrels; F. E. Marshall; B. Wiegand

Bright Lights Gamma-ray bursts (GRBs), bright flashes of gamma-ray light, are thought to be associated with the collapse of massive stars. GRB 130427A was detected on 27 April 2013, and it had the longest gamma-ray duration and one of the largest isotropic energy releases observed to date (see the Perspective by Fynbo). Ackermann et al. (p. 42, published online 21 November) report data obtained with the Fermi Gamma-Ray Space Telescope, which reveal a high-energy spectral component that cannot be accounted for by the standard external shock synchrotron radiation model. Vestrand et al. (p. 38, published online 21 November) report the detection of an extremely bright flash of visible light and unexpected similarities between the variations of optical light and the highest-energy gamma rays that indicate a common origin. A detailed analysis of the first pulse of GRB 130427A by Preece et al. (p. 51, published online 21 November) suggests that existing models cannot explain all the observed spectral and temporal behaviors simultaneously. Maselli et al. (p. 48, published online 21 November) present x-ray and optical light curves of the bursts prompt emission as well as of its afterglow as recorded by the Swift satellite and a range of ground-based telescopes. Multiwavelength data from an extremely bright stellar explosion provide details of the physics of these violent events. Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ∼ 3 × 1053 ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.


The Astrophysical Journal | 2001

The Ultraluminous M81 X-9 Source: 20 Years’ Variability and Spectral States

V. La Parola; G. Peres; G. Fabbiano; D.-W. Kim; F. Bocchino

The source X-9 was discovered with the Einstein Observatory in the —eld of M81 and is located in the dwarf galaxy Holmberg IX. X-9 has a 0.2¨4.0 keV luminosity in excess of the Eddington limit for a 1 compact accreting object, if it is at the same distance as Holmberg IX (3.4 Mpc). Past hypotheses on M _ the nature of this super-Eddington source included a supernova remnant or supershell, an accreting compact object, and a background QSO. To shed light on the nature of this source, we have analyzed archival data, including the Einstein data, 23 ROSAT observations, and BeppoSAX and ASCA pointings. Our analysis reveals that most of the emission of X-9 arises from a pointlike highly variable source (0.5¨ 2.4 keV ergs s~1) and that lower luminosity extended emission may be associated with L X D 2¨8 ] 1039 it. The spectrum of this source changes between low- and high-intensity states, in a way reminiscent of the spectra of galactic black hole candidates. Our result strongly suggest that X-9 is not a background QSO, but a bona —de ii super-Eddington ˇˇ source in Ho IX, a dwarf companion of M81.

Collaboration


Dive into the V. La Parola's collaboration.

Researchain Logo
Decentralizing Knowledge