V. Ossenkopf
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Ossenkopf.
Astronomy and Astrophysics | 2012
Pieter Roelfsema; Frank Helmich; D. Teyssier; V. Ossenkopf; Patrick William Morris; Michael Olberg; R. Shipman; C. Risacher; M. Akyilmaz; R. Assendorp; I. M. Avruch; D. A. Beintema; N. Biver; A. C. A. Boogert; Colin Borys; J. Braine; M. Caris; E. Caux; J. Cernicharo; O. Coeur-Joly; C. Comito; G. de Lange; B. Delforge; P. Dieleman; L. Dubbeldam; Th. de Graauw; Kevin Edwards; Michel Fich; F. Flederus; C. Gal
Aims. In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described. Methods. The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources. Results. The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies.
Astronomy and Astrophysics | 2007
M. Röllig; Nicholas Paul Abel; T. A. Bell; Frank Bensch; J. H. Black; Gary J. Ferland; B. Jonkheid; I. Kamp; Michael J. Kaufman; J. Le Bourlot; F. Le Petit; R. Meijerink; O. Morata; V. Ossenkopf; E. Roueff; Gargi Shaw; Marco Spaans; A. Sternberg; J. Stutzki; W. F. Thi; E. F. van Dishoeck; P. A. M. van Hoof; Serena Viti; Mark G. Wolfire
Aims. We present a comparison between independent computer codes, modeling the physics and chemistry of interstellar photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution. Methods. A number of benchmark models have been created, covering low and high gas densities n = 10 3 , 10 5.5 cm −3 and far ultraviolet intensities χ = 10, 10 5 in units of the Draine field (FUV: 6 < h ν< 13.6 eV). The benchmark models were computed in two ways: one set assuming constant temperatures, thus testing the consistency of the chemical network and photo-processes, and a second set determining the temperature self consistently by solving the thermal balance, thus testing the modeling of the heating and cooling mechanisms accounting for the detailed energy balance throughout the clouds. Results. We investigated the impact of PDR geometry and agreed on the comparison of results from spherical and plane-parallel PDR models. We identified a number of key processes governing the chemical network which have been treated differently in the various codes such as the effect of PAHs on the electron density or the temperature dependence of the dissociation of CO by cosmic ray induced secondary photons, and defined a proper common treatment. We established a comprehensive set of reference models for ongoing and future PDR model bench-marking and were able to increase the agreement in model predictions for all benchmark models significantly. Nevertheless, the remaining spread in the computed observables such as the atomic fine-structure line intensities serves as a warning that there is still a considerable uncertainty when interpreting astronomical data with our models.Aims. We present a comparison between independent computer codes, modeling the physics and chemistry of photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution. Methods. A number of benchmark models have been calculated, covering low and high gas densities n = 103, 105.5 cm−3 and far ultraviolet intensities χ = 10, 105 (FUV: 6 < h ν < 13.6 eV). The benchmark models were computed in two ways: one set assuming constant temperatures, thus testing the consistency of the chemical network and photo-reactions, and a second set determining the temperature self consistently by solving the thermal balance, thus testing the modeling of the heating and cooling mechanisms accounting for the detailed energy balance throughout the clouds. Results. We investigated the impact of PDR geometry and agreed on the comparison of results from spherical and plane-parallel PDR models. We identified a number of key processes governing the chemical network which have been treated differently in the various codes such as the effect of PAHs on the electron density or the temperature dependence of the dissociation of CO by cosmic ray induced secondary photons, and defined a proper common treatment. We established a comprehensive set of reference models for ongoing and future PDR modeling and were able to increase the agreement in model predictions for all benchmark models significantly. Nevertheless, the remaining spread in the computed observables such as the atomic fine-structure line intensities serves as a warning that the astronomical data should not be overinterpreted.
Astronomy and Astrophysics | 2002
V. Ossenkopf; Mordecai-Mark Mac Low
We compare velocity structure observed in the Polaris Flare molecular cloud at scales ranging from 0.015 pc to 20 pc to the velocity structure of a suite of simulations of supersonic hydrodynamic and MHD turbulence computed with the ZEUS MHD code. We examine dierent methods of characterising the structure, including a scanning-beam method that provides an objective measurement of Larsons size-linewidth relation, structure functions, velocity and velocity dierence probability distribution functions (PDFs), and the-variance wavelet transform, and use them to compare models and observations. The-variance is most sensitive to characteristic scales and scaling laws, but is limited in its application by a lack of intensity weighting so that its results are easily dominated by observational noise in maps with large empty areas. The scanning-beam size-linewidth relation is more robust with respect to noisy data. Obtaining the global velocity scaling behaviour requires that large-scale trends in the maps not be removed but treated as part of the turbulent cascade. We compare the true velocity PDF in our models to simulated observations of velocity centroids and average line profiles in optically thin lines, and find that the line profiles reflect the true PDF better unless the map size is comparable to the total line-of-sight thickness of the cloud. Comparison of line profiles to velocity centroid PDFs can thus be used to measure the line-of-sight depth of a cloud. The observed density and velocity structure is consistent with supersonic turbulence with a driving scale at or above the size of the molecular cloud and dissipative processes below 0.05 pc. Ambipolar diusion could explain the dissipation. Over most of the observed range of scales the velocity structure is that of a shock-dominated medium driven from large scale. The velocity PDFs exclude small-scale driving such as that from stellar outflows as a dominant process in the observed region. In the models, large-scale driving is the only process that produces deviations from a Gaussian PDF shape consistent with observations, almost independent of the strength of driving or magnetic field. Strong magnetic fields impose a clear anisotropy on the velocity field, reducing the velocity variance in directions perpendicular to the field.
Astronomy and Astrophysics | 2006
M. Röllig; V. Ossenkopf; S. Jeyakumar; J. Stutzki; A. Sternberg
We study the effects of a metallicity variation on the thermal balance and [CII] fine-structure line strengths in interstellar photon dominated regions (PDRs). We find that a reduction in the dust-to-gas ratio and the abundance of heavy elements in the gas phase changes the heat balance of the gas in PDRs. The surface temperature of PDRs decreases as the metallicity decreases except for high density (
Astronomy and Astrophysics | 2002
G.-J. van Zadelhoff; Cornelis P. Dullemond; F. F. S. van der Tak; J. A. Yates; S. D. Doty; V. Ossenkopf; M. R. Hogerheijde; M. Juvela; H. Wiesemeyer; F. L. Schöier
n>10^6
Astronomy and Astrophysics | 2010
Edwin A. Bergin; T. G. Phillips; C. Comito; Nathan R. Crockett; Dariusz C. Lis; P. Schilke; S. Wang; T. A. Bell; Geoffrey A. Blake; Bruce Bumble; E. Caux; S. Cabrit; C. Ceccarelli; J. Cernicharo; F. Daniel; Th. de Graauw; M.-L. Dubernet; M. Emprechtinger; P. Encrenaz; E. Falgarone; M. Gerin; Thomas F. Giesen; J. R. Goicoechea; Paul F. Goldsmith; H. Gupta; Paul Hartogh; Frank Helmich; E. Herbst; C. Joblin; Doug Johnstone
cm
Astronomy and Astrophysics | 2011
N. Schneider; Sylvain Bontemps; R. Simon; V. Ossenkopf; Christoph Federrath; Ralf S. Klessen; F. Motte; P. André; J. Stutzki; Christopher M. Brunt
^{-3}
Astronomy and Astrophysics | 2001
F. Bensch; Jurgen Stutzki; V. Ossenkopf
) clouds exposed to weak (
The Astrophysical Journal | 2015
Nick Indriolo; David A. Neufeld; M. Gerin; P. Schilke; Arnold O. Benz; B. Winkel; Karl M. Menten; E.T. Chambers; J. H. Black; S. Bruderer; Edith Falgarone; B. Godard; J. R. Goicoechea; Harshal Gupta; D. C. Lis; V. Ossenkopf; Carina M. Persson; Paule Sonnentrucker; F. F. S. van der Tak; E. F. van Dishoeck; Mark G. Wolfire; F. Wyrowski
\chi<100
Astronomy and Astrophysics | 2015
N. Schneider; V. Ossenkopf; T. Csengeri; Ralf S. Klessen; Christoph Federrath; Pascal Tremblin; Philipp Girichidis; Sylvain Bontemps; P. André
) FUV fields where vibrational H