V. Radhakrishna
Indian Space Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Radhakrishna.
IEEE\/ASME Journal of Microelectromechanical Systems | 2016
Leema Rose Viannie; G. R. Jayanth; V. Radhakrishna; K. Rajanna
SU8-based micromechanical structures are widely used as thermal actuators in the development of compliant micromanipulation tools. This paper reports the design, nonlinear thermomechanical analysis, fabrication, and thermal actuation of SU8 actuators. The thermomechanical analysis of the actuator incorporates nonlinear temperature-dependent properties of SU8 polymer to accurately model its thermal response during actuation. The designed SU8 thermal actuators are fabricated using surface micromachining techniques and the electrical interconnects are made to them using flip-chip bonding. The issues due to thermal stress during fabrication are discussed and a novel strategy is proposed to release the thermal stress in the fabricated actuators. Subsequent characterization of the actuator using an optical profilometer reveals excellent thermal response, good repeatability, and low hysteresis. The average deflection is ~8.5 μm for an actuation current of ~5 mA. The experimentally obtained deflection profile and the tip deflection at different currents are both shown to be in good agreement with the predictions of the nonlinear thermomechanical model. This underscores the need to consider nonlinearities when modeling the response of SU8 thermal actuators.
Optical Materials Express | 2013
Baishali Garai; V. Radhakrishna; K. Rajanna
CsI can be used as a photocathode material in UV photon detectors. The detection efficiency of the detector strongly depends on the photoemission property of the photocathode. CsI is very hygroscopic in nature. This limits the photoelectron yield from the photocathode when exposed to humid air even for a short duration during photocathode mounting or transfer. We report here on the improvement of photoemission properties of both thick (300 nm) and thin (30 nm) UV-sensitive CsI film exposed to humid air by the process of vacuum treatment.
ieee sensors | 2012
Leema Rose Viannie; Sudeep Joshi; G. R. Jayanth; K. Rajanna; V. Radhakrishna
This work presents micro-actuation of atomic force microscopy (AFM) cantilevers using piezoelectric Zinc Oxide (ZnO) thin film. In tapping mode AFM, the cantilever is driven near its resonant frequency by an external oscillator such as piezotube or stack of piezoelectric material. Use of integrated piezoelectric thin film for AFM cantilever eliminates the problems like inaccurate tuning and unwanted vibration modes. In this work, silicon AFM cantilevers were sputter deposited with ZnO piezoelectric film along with top and bottom metallic electrodes. The self-excitation of the ZnO coated AFM cantilever was studied using Laser Doppler Vibrometer (LDV). At its resonant frequency (227.11 kHz), the cantilever displacement varies linearly with applied excitation voltage. We observed an increase in the actuation response (131nm/V) due to improved quality of ZnO films deposited at 200 °C.
Advances in Space Research | 2014
S. Narendranath; P. S. Athiray; P. Sreekumar; V. Radhakrishna; A. Tyagi; B. J. Kellett
The CLASS experiment on Chandrayaan-2, the second Indian lunar mission, aims tomap the abundance of the major rock forming elements on the lunar surface using the technique of X-ray fluorescence during solar flare events. CLASS is a continuation of the successful C1XS [1] XRF experiment on Chandrayaan-1. CLASS is designed to provide lunar mapping of elemental abundances with a nominal spatial resolution of 25 km (FWHM) from a 200 km polar, circular orbit of Chandrayaan-2.
Proceedings of SPIE | 2012
P. S. Athiray; S. Narendranath; P. Sreekumar; Jason Gow; V. Radhakrishna; B.R.S. Babu
We present the formulation of an analytical model which simulates charge transport in Swept Charge Devices (SCDs) to understand the nature of the spectral redistribution function (SRF). We attempt to construct the energy-dependent and position dependent SRF by modeling the photon interaction, charge cloud generation and various loss mechanisms viz., recombination, partial charge collection and split events. The model will help in optimizing event selection, maximize event recovery and improve spectral modeling for Chandrayaan-2 (slated for launch in 2014). A proto-type physical model is developed and the algorithm along with its results are discussed in this paper.
Proceedings of SPIE | 2014
K. Rakhee; V. Koushal; V. Radhakrishna; G. Baishali; A. M. Vinodkumar
X-ray polarimeters based on Time Projection Chamber (TPC) geometry are currently being studied and developed to make sensitive measurement of polarization in 2-10keV energy range. TPC soft X-ray polarimeters exploit the fact that emission direction of the photoelectron ejected via photoelectric effect in a gas proportional counter carries the information of the polarization of the incident X-ray photon. Operating parameters such as pressure, drift field and driftgap affect the performance of a TPC polarimeter. Simulations presented here showcase the effect of these operating parameters on the modulation factor of the TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards Gas Electron Multiplier (GEM). The emission direction is reconstructed from the image and modulation factor is computed. Our study has shown that Ne/DME (50/50) at lower pressure and drift field can be used for a TPC polarimeter with modulation factor of 50-65%.X-ray polarimeters based on Time Projection Chamber (TPC) geometry are currently being studied and developed to make sensitive measurement of polarization in 2-10keV energy range. TPC soft X-ray polarimeters exploit the fact that emission direction of the photoelectron ejected via photoelectric effect in a gas proportional counter carries the information of the polarization of the incident X-ray photon. Operating parameters such as pressure, drift field and driftgap affect the performance of a TPC polarimeter. Simulations presented here showcase the effect of these operating parameters on the modulation factor of the TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards Gas Electron Multiplier (GEM). The emission direction is reconstructed from the image and modulation factor is computed. Our study has shown that Ne/DME (50/50) at lower pressure and drift field can be used for a TPC polarimeter with modulation factor of 50-65%.
Photonics Research | 2014
G. Baishali; V. Radhakrishna; V. Koushal; K. Rakhee; K. Rajanna
The detection efficiency of a gaseous photomultiplier depends on the photocathode quantum efficiency and the extraction efficiency of photoelectrons into the gas. In this paper we have studied the performance of an UV photon detector with P10 gas in which the extraction efficiency can reach values near to those in vacuum operated devices. Simulations have been done to compare the percentage of photoelectrons backscattered in P10 gas as well as in the widely used neon-based gas mixture. The performance study has been carried out using a single stage thick gas electron multiplier (THGEM). The electron pulses and electron spectrum are recorded under various operating conditions. Secondary effects prevailing in UV photon detectors like photon feedback are discussed and its effect on the electron spectrum under different operating conditions is analyzed.
Proceedings of SPIE | 2013
G. Baishali; V. Radhakrishna; V. Koushal; K. Rakhee; K. Rajanna
Efficient photon detection in gaseous photomultipliers require maximum photoelectron yield from the photocathode surface and also detection of them. In this work we have investigated the parameters that affect the photoelectron yield from the photocathode surface and methods to improve them thus ensuring high detection efficiency of the gaseous photomultiplier. The parameters studied are the electric field at the photocathode surface, surface properties of photocathode and pressure of gas mixture inside the gaseous photomultiplier. It was observed that optimized electric field at the photocathode ensures high detection efficiency. Lower pressure of filled gas increases the photoelectron yield from the photocathode surface but reduces the focusing probability of electrons inside the electron multiplier. Also evacuation for longer duration before gas filling increases the photoelectron yield.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2013
G. Baishali; V. Radhakrishna; V. Koushal; K. Rakhee; K. Rajanna
Radiation Detection Technology and Methods | 2018
P. Ray; G. Baishali; V. Radhakrishna; K. Rajanna