Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Roytershteyn is active.

Publication


Featured researches published by V. Roytershteyn.


Physics of Plasmas | 2013

Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas

Homa Karimabadi; V. Roytershteyn; Minping Wan; William H. Matthaeus; William Daughton; P. Wu; M. A. Shay; B. Loring; J. Borovsky; Ersilia Leonardis; Sandra C. Chapman; T. K. M. Nakamura

An unsolved problem in plasma turbulence is how energy is dissipated at small scales. Particle collisions are too infrequent in hot plasmas to provide the necessary dissipation. Simulations either treat the fluid scales and impose an ad hoc form of dissipation (e.g., resistivity) or consider dissipation arising from resonant damping of small amplitude disturbances where damping rates are found to be comparable to that predicted from linear theory. Here, we report kinetic simulations that span the macroscopic fluid scales down to the motion of electrons. We find that turbulent cascade leads to generation of coherent structures in the form of current sheets that steepen to electron scales, triggering strong localized heating of the plasma. The dominant heating mechanism is due to parallel electric fields associated with the current sheets, leading to anisotropic electron and ion distributions which can be measured with NASAs upcoming Magnetospheric Multiscale mission. The motion of coherent structures also generates waves that are emitted into the ambient plasma in form of highly oblique compressional and shear Alfven modes. In 3D, modes propagating at other angles can also be generated. This indicates that intermittent plasma turbulence will in general consist of both coherent structures and waves. However, the current sheet heating is found to be locally several orders of magnitude more efficient than wave damping and is sufficient to explain the observed heating rates in the solar wind.


Physics of Plasmas | 2014

The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas

Homa Karimabadi; V. Roytershteyn; H.X. Vu; Yu. A. Omelchenko; J. D. Scudder; William Daughton; A. P. Dimmock; K. Nykyri; Minping Wan; David G. Sibeck; Mahidhar Tatineni; Amit Majumdar; Burlen Loring; Berk Geveci

Global hybrid (electron fluid, kinetic ions) and fully kinetic simulations of the magnetosphere have been used to show surprising interconnection between shocks, turbulence, and magnetic reconnection. In particular, collisionless shocks with their reflected ions that can get upstream before retransmission can generate previously unforeseen phenomena in the post shocked flows: (i) formation of reconnecting current sheets and magnetic islands with sizes up to tens of ion inertial length. (ii) Generation of large scale low frequency electromagnetic waves that are compressed and amplified as they cross the shock. These “wavefronts” maintain their integrity for tens of ion cyclotron times but eventually disrupt and dissipate their energy. (iii) Rippling of the shock front, which can in turn lead to formation of fast collimated jets extending to hundreds of ion inertial lengths downstream of the shock. The jets, which have high dynamical pressure, “stir” the downstream region, creating large scale disturbances ...


Physics of Plasmas | 2014

Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology

William Daughton; T. K. M. Nakamura; Homa Karimabadi; V. Roytershteyn; B. Loring

Three-dimensional kinetic simulations of magnetic reconnection for parameter regimes relevant to the magnetopause current layer feature the development of turbulence, driven by the magnetic and velocity shear, and dominated by coherent structures including flux ropes, current sheets, and flow vortices. Here, we propose a new approach for computing the global reconnection rate in the presence of this complexity. The mixing of electrons originating from separate sides of the magnetopause layer is used as a proxy to rapidly identify the magnetic topology and track the evolution of magnetic flux. The details of this method are illustrated for an asymmetric current layer relevant to the subsolar magnetopause and for a flow shear dominated layer relevant to the lower latitude magnetopause. While the three-dimensional reconnection rates show a number of interesting differences relative to the corresponding two-dimensional simulations, the time scale for the energy conversion remains very similar. These results suggest that the mixing of field lines between topologies is more easily influenced by kinetic turbulence than the physics responsible for the energy conversion.


Physics of Plasmas | 2009

Influence of Coulomb collisions on the structure of reconnection layers

William Daughton; V. Roytershteyn; B. J. Albright; Homa Karimabadi; L. Yin; K. J. Bowers

The influence of Coulomb collisions on the structure of reconnection layers is examined in neutral sheet geometry using fully kinetic simulations with a Monte Carlo treatment of the Fokker–Planck operator. The algorithm is first carefully benchmarked against key predictions from transport theory, including the parallel and perpendicular resistivities as well as the thermal force. The results demonstrate that the collisionality is accurately specified, thus allowing the initial Lundquist number to be chosen as desired. For modest Lundquist numbers S≲1000, the classic Sweet–Parker solution is recovered. Furthermore, a distinct transition to a faster kinetic regime is observed when the thickness of the resistive layer δSP falls below the ion inertial length di. For higher Lundquist numbers S≳1000, plasmoids (secondary islands) are observed within the elongated resistive layers. These plasmoids give rise to a measurable increase in the reconnection rate and for certain cases induce a transition to kinetic reg...


Physics of Plasmas | 2014

Current sheets and pressure anisotropy in the reconnection exhaust

A. Le; J. Egedal; Jonathan Ng; Homa Karimabadi; J. D. Scudder; V. Roytershteyn; William Scott Daughton; Yi-Hsin Liu

A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.


ieee international conference on high performance computing data and analytics | 2012

Parallel I/O, analysis, and visualization of a trillion particle simulation

Surendra Byna; J. Chou; Oliver Rübel; Prabhat; H. Karimabadi; W. S. Daughter; V. Roytershteyn; E. W. Bethel; Mark Howison; Ke-Jou Hsu; Kuan-Wu Lin; Arie Shoshani; A. Uselton; Kesheng Wu

Petascale plasma physics simulations have recently entered the regime of simulating trillions of particles. These unprecedented simulations generate massive amounts of data, posing significant challenges in storage, analysis, and visualization. In this paper, we present parallel I/O, analysis, and visualization results from a VPIC trillion particle simulation running on 120,000 cores, which produces ~30TB of data for a single timestep. We demonstrate the successful application of H5Part, a particle data extension of parallel HDF5, for writing the dataset at a significant fraction of system peak I/O rates. To enable efficient analysis, we develop hybrid parallel FastQuery to index and query data using multi-core CPUs on distributed memory hardware. We show good scalability results for the FastQuery implementation using up to 10,000 cores. Finally, we apply this indexing/query-driven approach to facilitate the first-ever analysis and visualization of the trillion particle dataset.


Philosophical Transactions of the Royal Society A | 2015

Generation of magnetic holes in fully kinetic simulations of collisionless turbulence.

V. Roytershteyn; Homa Karimabadi; Aaron Roberts

The results of three-dimensional fully kinetic simulations of decaying turbulence with the amplitude of the fluctuating magnetic field comparable to that of the mean field are presented. Coherent structures in the form of localized depressions in the magnitude of the magnetic field are observed to form self-consistently in the simulations. These depressions bear considerable resemblance to the so-called magnetic holes frequently reported in spacecraft observations. The structures are pressure-balanced and tend to be aligned with the local magnetic field. In the smallest structures observed, the decrease in the magnetic field strength is compensated by an increase in the electron perpendicular pressure, such that the transverse size of these structures is comparable to the electron gyroradius inside the depression. It is suggested that the structures evolve self-consistently out of the depressions in the fluctuating magnetic field, rather than being the consequence of instability growth and saturation. This is confirmed by additional, small-scale simulations, including those with realistic mass ratio between protons and electrons.


Journal of Geophysical Research | 2015

The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

Y. H. Liu; Christopher Mouikis; L. M. Kistler; S. Wang; V. Roytershteyn; Homa Karimabadi

While the plasma in the Earths magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earths magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.


Physical Review Letters | 2013

Identification of intermittent multifractal turbulence in fully kinetic simulations of magnetic reconnection.

Ersilia Leonardis; Sandra C. Chapman; William Daughton; V. Roytershteyn; Homa Karimabadi

Recent fully nonlinear, kinetic three-dimensional simulations of magnetic reconnection [W. Daughton et al., Nat. Phys. 7, 539 (2011)] evolve structures and exhibit dynamics on multiple scales, in a manner reminiscent of turbulence. These simulations of reconnection are among the first to be performed at sufficient spatiotemporal resolution to allow formal quantitative analysis of statistical scaling, which we present here. We find that the magnetic field fluctuations generated by reconnection are anisotropic, have nontrivial spatial correlation, and exhibit the hallmarks of finite range fluid turbulence: they have non-Gaussian distributions, exhibit extended self-similarity in their scaling, and are spatially multifractal. Furthermore, we find that the rate at which the fields do work on the particles, J · E, is also multifractal, so that magnetic energy is converted to plasma kinetic energy in a manner that is spatially intermittent. This suggests that dissipation in this sense in collisionless reconnection on kinetic scales has an analogue in fluidlike turbulent phenomenology, in that it proceeds via multifractal structures generated by an intermittent cascade.


Physics of Plasmas | 2008

Two-dimensional fully kinetic simulations of driven magnetic reconnection with boundary conditions relevant to the Magnetic Reconnection Experiment

S. Dorfman; William Daughton; V. Roytershteyn; Hantao Ji; Y. Ren; M. Yamada

Two-dimensional fully kinetic simulations are performed using global boundary conditions relevant to model the Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Phys Plasmas 4, 1936 (1997)]. The geometry is scaled in terms of the ion kinetic scales in the experiment, and a reconnection layer is created by reducing the toroidal current in the flux cores in a manner similar to the actual experiment. The ion-scale features in these kinetic simulations are in remarkable agreement with those observed in MRX, including the reconnection inflow rate and quadrupole field structure. In contrast, there are significant discrepancies in the simulated structure of the electron layer that remain unexplained. In particular, the measured thickness of the electron layers is 3–5 times thicker in MRX than in the kinetic simulations. The layer length is highly sensitive to downstream boundary conditions as well as the time over which the simulation is driven. However, for a fixed set of chosen boundary conditions, an ...

Collaboration


Dive into the V. Roytershteyn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Daughton

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Masaaki Yamada

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. Albright

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

K. J. Bowers

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Dorfman

University of California

View shared research outputs
Top Co-Authors

Avatar

H. Ji

Princeton University

View shared research outputs
Top Co-Authors

Avatar

L. Yin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge