Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. S. Kalyanaraman is active.

Publication


Featured researches published by V. S. Kalyanaraman.


Journal of Virology | 2004

Protection against mucosal simian immunodeficiency virus SIV (mac251) challenge by using replicating adenovirus-SIV multigene vaccine priming and subunit boosting

L. Jean Patterson; Nina Malkevitch; David Venzon; Joel Pinczewski; Victor Raul Gomez-Roman; Liqun Wang; V. S. Kalyanaraman; Phillip D. Markham; Frank A. Robey; Marjorie Robert-Guroff

ABSTRACT Whereas several recent AIDS vaccine strategies have protected rhesus macaques against a pathogenic simian/human immunodeficiency virus (SHIV)89.6P challenge, similar approaches have provided only modest, transient reductions in viral burden after challenge with virulent, pathogenic SIV, which is more representative of HIV infection of people. We show here that priming with replicating adenovirus recombinants encoding SIV env/rev, gag, and/or nef genes, followed by boosting with SIV gp120 or an SIV polypeptide mimicking the CD4 binding region of the envelope, protects rhesus macaques from intrarectal infection with the highly pathogenic SIVmac251. Using trend analysis, significant reductions in acute-phase and set point viremia were correlated with anti-gp120 antibody and cellular immune responses, respectively. Within immunization groups exhibiting significant protection, a subset (39%) of macaques have exhibited either no viremia, cleared viremia, or controlled viremia at the threshold of detection, now more than 40 weeks postchallenge. This combination prime-boost strategy, utilizing replication competent adenovirus, is a promising alternative for HIV vaccine development.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Crosslinked HIV-1 envelope-CD4 receptor complexes elicit broadly cross-reactive neutralizing antibodies in rhesus macaques

Timothy Fouts; Karla Godfrey; Kathryn Bobb; David C. Montefiori; Carl V. Hanson; V. S. Kalyanaraman; Anthony L. DeVico; Ranajit Pal

The identification of HIV envelope structures that generate broadly cross-reactive neutralizing antibodies is a major goal for HIV-vaccine development. In this study, we evaluated one such structure, expressed as either a gp120–CD4 or a gp140–CD4 complex, for its ability to elicit a neutralizing antibody response. In rhesus macaques, covalently crosslinked complexes of soluble human CD4 (shCD4) and HIV-1IIIB envelope glycoproteins (gp120 or gp140) generated antibodies that neutralized a wide range of primary HIV-1 isolates regardless of the coreceptor usage or genetic subtype. Ig with cross-reactive neutralizing activity was recovered by affinity chromatography with a chimeric single-chain polypeptide containing sequences for HIVBaL gp120 and a mimetic peptide that induces a CD4-triggered envelope structure. These results suggest that covalently crosslinked complexes of the HIV-1 surface envelope glycoprotein and CD4 elicit broadly neutralizing humoral responses that, in part, may be directed against a novel epitope(s) found on the HIV-1 envelope.


Journal of Virology | 2009

Correlation of Vaccine-Elicited Systemic and Mucosal Nonneutralizing Antibody Activities with Reduced Acute Viremia following Intrarectal Simian Immunodeficiency Virus SIVmac251 Challenge of Rhesus Macaques

Rachmat Hidajat; Peng Xiao; Qifeng Zhou; David Venzon; L. Ebonita Summers; V. S. Kalyanaraman; David C. Montefiori; Marjorie Robert-Guroff

ABSTRACT Cell-mediated immunity and neutralizing antibodies contribute to control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but the role of nonneutralizing antibodies is not defined. Previously, we reported that sequential oral/oral or intranasal/oral (I/O) priming with replication-competent adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants, followed by intramuscular envelope protein boosting, elicited systemic and mucosal cellular immunity and exhibited equivalent, significant reductions of chronic viremia after rectal SIVmac251 challenge. However, I/O priming gave significantly better control of acute viremia. Here, systemic and mucosal humoral immunity were investigated for potential correlates with the acute challenge outcome. Strong serum binding but nonneutralizing antibody responses against SIVmac251 were induced in both groups. Antibody responses appeared earlier and overall were higher in the I/O group. Reduced acute viremia was significantly correlated with higher serum binding titer, stronger antibody-dependent cellular cytotoxicity activity, and peak prechallenge and 2-week-postchallenge antibody-dependent cell-mediated viral inhibition (ADCVI). The I/O group consistently displayed greater anti-envelope immunoglobulin A (IgA) antibody responses in bronchoalveolar lavage and a stronger rectal anti-envelope IgA anamnestic response 2 weeks postchallenge. Pre- and postchallenge rectal secretions inhibited SIV transcytosis across epithelial cells. The inhibition was significantly higher in the I/O group, although a significant correlation with reduced acute viremia was not reached. Overall, the replicating Ad5hr-SIV priming/envelope boosting approach elicited strong systemic and mucosal antibodies with multiple functional activities. The pattern of elevated immune responses in the I/O group is consistent with its better control of acute viremia mediated, at least in part, by ADCVI activity and transcytosis inhibition.


Journal of Immunology | 2006

Subunit Recombinant Vaccine Protects against Monkeypox

Jean-Michel Heraud; Yvette Edghill-Smith; Victor I. Ayala; Irene Kalisz; Janie Parrino; V. S. Kalyanaraman; Jody Manischewitz; Lisa R. King; Anna Hryniewicz; Christopher J. Trindade; Meredith Hassett; Wen-Po Tsai; David Venzon; Aysegul Nalca; Monica Vaccari; Peter Silvera; Mike Bray; Barney S. Graham; Hana Golding; Jay W. Hooper; Genoveffa Franchini

The smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox, but is contraindicated in immunocompromised individuals. Because Abs to VACV mediate protection, a live virus vaccine could be substituted by a safe subunit protein-based vaccine able to induce a protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the intradermal and i.m. routes, either alone or in combination with the equivalent recombinant proteins produced in Escherichia coli. Animals that received only DNA failed to produce high titer Abs, developed innumerable skin lesions after challenge, and died in a manner similar to placebo controls. By contrast, the animals vaccinated with proteins developed moderate to severe disease (20–155 skin lesions) but survived. Importantly, those immunized with DNA and boosted with proteins had mild disease with 15 or fewer lesions that resolved within days. DNA/protein immunization elicited Th responses and binding Ab titers to all four proteins that correlated negatively with the total lesion number. The sera of the immunized macaques recognized a limited number of linear B cell epitopes that are highly conserved among orthopoxviruses. Their identification may guide future efforts to develop simpler, safer, and more effective vaccines for monkeypox and smallpox.


Journal of Virology | 2005

Replicating Rather than Nonreplicating Adenovirus-Human Immunodeficiency Virus Recombinant Vaccines Are Better at Eliciting Potent Cellular Immunity and Priming High-Titer Antibodies

Bo Peng; Liqun Rejean Wang; Victor Raul Gomez-Roman; Alberta Davis-Warren; David C. Montefiori; V. S. Kalyanaraman; David Venzon; Jun Zhao; Elaine Kan; Thomas J. Rowell; Krishna K. Murthy; Indresh K. Srivastava; Susan W. Barnett; Marjorie Robert-Guroff

ABSTRACT A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1MNenv/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIVSF162 gp140ΔV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1MNenv/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1SF162 gp140ΔV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.


Journal of Virology | 2007

A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques.

Thorsten Demberg; Ruth H. Florese; Megan J. Heath; Kay Larsen; Irene Kalisz; V. S. Kalyanaraman; Eun Mi Lee; Ranajit Pal; David Venzon; Richard Grant; L. Jean Patterson; Birgit Korioth-Schmitz; Adam P. Buzby; Dilani Dombagoda; David C. Montefiori; Norman L. Letvin; Aurelio Cafaro; Barbara Ensoli; Marjorie Robert-Guroff

ABSTRACT We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIVmac251. Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV89.6P challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV89.6P. We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV89.6P challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV89.6P-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.


Nature Medicine | 2016

Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition.

Monica Vaccari; Shari N. Gordon; Slim Fourati; Luca Schifanella; Namal P.M. Liyanage; Mark J. Cameron; Brandon F. Keele; Xiaoying Shen; Georgia D. Tomaras; Erik Billings; Mangala Rao; Amy W. Chung; Karen G. Dowell; Chris Bailey-Kellogg; Eric P. Brown; Margaret E. Ackerman; Diego A. Vargas-Inchaustegui; Stephen Whitney; Melvin N. Doster; Nicolo Binello; Poonam Pegu; David C. Montefiori; Kathryn E. Foulds; David S. Quinn; Mitzi Donaldson; Frank Liang; Karin Loré; Mario Roederer; Richard A. Koup; Adrian B. McDermott

A recombinant vaccine containing Aventis Pasteurs canarypox vector (ALVAC)–HIV and gp120 alum decreased the risk of HIV acquisition in the RV144 vaccine trial. The substitution of alum with the more immunogenic MF59 adjuvant is under consideration for the next efficacy human trial. We found here that an ALVAC–simian immunodeficiency virus (SIV) and gp120 alum (ALVAC–SIV + gp120) equivalent vaccine, but not an ALVAC–SIV + gp120 MF59 vaccine, was efficacious in delaying the onset of SIVmac251 in rhesus macaques, despite the higher immunogenicity of the latter adjuvant. Vaccine efficacy was associated with alum-induced, but not with MF59-induced, envelope (Env)-dependent mucosal innate lymphoid cells (ILCs) that produce interleukin (IL)-17, as well as with mucosal IgG to the gp120 variable region 2 (V2) and the expression of 12 genes, ten of which are part of the RAS pathway. The association between RAS activation and vaccine efficacy was also observed in an independent efficacious SIV-vaccine approach. Whether RAS activation, mucosal ILCs and antibodies to V2 are also important hallmarks of HIV-vaccine efficacy in humans will require further studies.


Journal of Virology | 2003

Potent, persistent induction and modulation of cellular immune responses in rhesus macaques primed with Ad5hr-simian immunodeficiency virus (SIV) env/rev, gag, and/or nef vaccines and boosted with SIV gp120.

L. Jean Patterson; Nina Malkevitch; Joel Pinczewski; David Venzon; Yuanmei Lou; Bo Peng; Cindy Munch; Melissa Leonard; Ersell Richardson; Kristine Aldrich; V. S. Kalyanaraman; George N. Pavlakis; Marjorie Robert-Guroff

ABSTRACT Immunity elicited by multicomponent vaccines delivered by replication-competent Ad5hr-simian immunodeficiency virus (SIV) recombinants was systematically investigated. Rhesus macaques were immunized mucosally at weeks 0 and 12 with Ad5hr-SIVsmH4env/rev, with or without Ad5hr-SIVmac239gag or Ad5hr-SIVmac239nef, or with all three recombinants. The total Ad5hr dosage was comparably adjusted among all animals with empty Ad5hr-ΔE3 vector. The macaques were boosted with SIV gp120 in monophosphoryl A-stable emulsion adjuvant at 24 and 36 weeks. Controls received Ad5hr-ΔE3 vector or adjuvant only. By ELISPOT analysis, all four SIV gene products elicited potent cellular immune responses that persisted 42 weeks post-initial immunization. Unexpectedly, modulation of this cellular immune response was observed among macaques receiving one, two, or three Ad5hr-SIV recombinants. Env responses were significantly enhanced throughout the immunization period in macaques immunized with Ad5hr-SIV env/rev plus Ad5hr-SIV gag and tended to be higher in macaques that also received Ad5hr-SIV nef. Macaques primed with all three recombinants displayed significant down-modulation in numbers of gamma interferon (IFN-γ)-secreting cells specific for SIV Nef, and the Env- and Gag-specific responses were also diminished. Modulation of antibody responses was not observed. Down-modulation was seen only during the period of Ad5hr-recombinant priming, not during subunit boosting, although SIV-specific IFN-γ-secreting cells persisted. The effect was not attributable to Ad5hr replication differences among immunization groups. Vaccine delivery via replication-competent live vectors, which can persistently infect new cells and continuously present low-level antigen, may be advantageous in overcoming competition among complex immunogens for immune recognition. Effects of current multicomponent vaccines on individual immune responses should be evaluated with regard to future vaccine design.


Journal of Virology | 2006

Systemic Immunization with an ALVAC-HIV-1/Protein Boost Vaccine Strategy Protects Rhesus Macaques from CD4+ T-Cell Loss and Reduces both Systemic and Mucosal Simian-Human Immunodeficiency Virus SHIVKU2 RNA Levels

Ranajit Pal; David Venzon; Sampa Santra; V. S. Kalyanaraman; David C. Montefiori; Lindsey Hocker; Lauren Hudacik; Nicolas Rose; Janos Nacsa; Yvette Edghill-Smith; Marcin Moniuszko; Zdeněk Hel; Igor M. Belyakov; Jay A. Berzofsky; Robyn Washington Parks; Phillip D. Markham; Norman L. Letvin; Jim Tartaglia; Genoveffa Franchini

ABSTRACT Transmission of human immunodeficiency virus type 1 (HIV-1) occurs primarily via the mucosal route, suggesting that HIV-1 vaccines may need to elicit mucosal immune responses. Here, we investigated the immunogenicity and relative efficacy of systemic immunization with two human ALVAC-HIV-1 recombinant vaccines expressing Gag, Pol, and gp120 (vCP250) or Gag, Pol, and gp160 (vCP1420) in a prime-boost protocol with their homologous vaccine native Env proteins. The relative efficacy was measured against a high-dose mucosal exposure to the pathogenic neutralization-resistant variant SHIVKU2 (simian-human immunodeficiency virus). Systemic immunization with both vaccine regimens decreased viral load levels not only in blood but unexpectedly also in mucosal sites and protected macaques from peripheral CD4+ T-cell loss. This protective effect was stronger when the gp120 antigen was included in the vaccine. Inclusion of recombinant Tat protein in the boosting phase along with the Env protein did not contribute further to the preservation of CD4+ T cells. Thus, systemic immunization with ALVAC-HIV-1 vaccine candidates elicits anti-HIV-1 immune responses able to contain virus replication also at mucosal sites in macaques.


Journal of Medical Primatology | 2005

Polyvalent DNA prime and envelope protein boost HIV-1 vaccine elicits humoral and cellular responses and controls plasma viremia in rhesus macaques following rectal challenge with an R5 SHIV isolate

Ranajit Pal; Shixia Wang; V. S. Kalyanaraman; B.C. Nair; Stephen Whitney; Timothy Keen; Lindsey Hocker; Lauren Hudacik; Nicolas Rose; Anthony D. Cristillo; Innocent Mboudjeka; Siyuan Shen; Te-Hui Wu-Chou; David C. Montefiori; John R. Mascola; Shan Lu; Phillip D. Markham

Abstract:  Immunization of macaques with multivalent DNA encoding gp120 genes from HIV‐1 subtypes A, B, C and E and a gag gene followed by boosting with homologous gp120 proteins elicited strong anti‐gp120 antibodies capable of neutralizing homologous and to a lesser degree heterologous HIV‐1 isolates. Both Env‐ and Gag‐specific cell mediated immune (CMI) responses were detected in the immunized animals. Following rectal challenge with an SHIV isolate encoding HIV‐1Ba‐Lenv, plasma viremia in the infected immunized animals was significantly lower than that observed in the naïve animals. Further, one of six immunized animals was completely protected whereas all six naïve animals were infected. These results demonstrate that a vaccine based on priming with a polyvalent DNA vaccine from multiple HIV‐1 subtypes followed by boosting with homologous Env proteins elicits anti‐HIV‐1 immune responses capable of controlling rectal transmission of SHIVBa‐L.

Collaboration


Dive into the V. S. Kalyanaraman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Venzon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Jean Patterson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen Whitney

Henry M. Jackson Foundation for the Advancement of Military Medicine

View shared research outputs
Top Co-Authors

Avatar

Thorsten Demberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shan Lu

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge