V. Sannibale
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Sannibale.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002
Hareem Tariq; A. Takamori; Flavio Vetrano; Chenyang Wang; A. Bertolini; G. Calamai; R. DeSalvo; Alberto Gennai; L. Holloway; G. Losurdo; S. Márka; M. Mazzoni; F. Paoletti; D. Passuello; V. Sannibale; R. Stanga
Low-power, ultra-high-vacuum compatible, non-contacting position sensors with nanometer resolution and centimeter dynamic range have been developed, built and tested. They have been designed at Virgo as the sensors for low-frequency modal damping of Seismic Attenuation System chains in Gravitational Wave interferometers and sub-micron absolute mirror positioning. One type of these linear variable differential transformers (LVDTs) has been designed to be also insensitive to transversal displacement thus allowing 3D movement of the sensor head while still precisely reading its position along the sensitivity axis. A second LVDT geometry has been designed to measure the displacement of the vertical seismic attenuation filters from their nominal position. Unlike the commercial LVDTs, mostly based on magnetic cores, the LVDTs described here exert no force on the measured structure.
Classical and Quantum Gravity | 2002
A. Takamori; Masaki Ando; A. Bertolini; G. Cella; R. DeSalvo; Mitsuhiro Fukushima; Yukiyoshi Iida; Florian Jacquier; Seiji Kawamura; S. Márka; Yuhiko Nishi; Kenji Numata; V. Sannibale; Kentaro Somiya; Ryutaro Takahashi; Hareem Tariq; Kimio Tsubono; Jose Ugas; Nicolas Viboud; Hiroaki Yamamoto; Tatsuo Yoda; Chenyang Wang
Several R&D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (−180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SUS is equipped with a totally passive magnetic damper to suppress internal resonances without degrading the thermal noise performance. In this paper we discuss the SUS details and present prototype results.
Classical and Quantum Gravity | 2008
Ryutaro Takahashi; Koji Arai; Daisuke Tatsumi; Mitsuhiro Fukushima; Toshitaka Yamazaki; M. K. Fujimoto; K. Agatsuma; Y. Arase; Noriyasu Nakagawa; A. Takamori; Kimio Tsubono; R. DeSalvo; A. Bertolini; S. Márka; V. Sannibale
TAMA300 has been upgraded to improve the sensitivity at low frequencies after the last observation run in 2004. To avoid the noise caused by seismic activities, we installed a new seismic isolation system —- the TAMA seismic attenuation system (SAS). Four SAS towers for the test-mass mirrors were sequentially installed from 2005 to 2006. The recycled Fabry–Perot Michelson interferometer was successfully locked with the SAS. We confirmed the reduction of both length and angular fluctuations at frequencies higher than 1 Hz owing to the SAS.
Physics Letters A | 2002
P. A. Willems; V. Sannibale; Jaap Weel; V. P. Mitrofanov
The quality factor (Q) of a violin mode of a fiber under tension is related to the Q of the unloaded fiber by the dilution factor. We calculate this dilution factor from measurements of the Q’s and compare to measurements based on the shift of the violin mode frequencies with temperature, and to theoretical predictions. We also report supporting measurements of the temperature dependence of the Young’s modulus of fused silica. The Q’s of the violin modes are the highest yet measured in fused silica mechanical resonators. 2002 Published by Elsevier Science B.V.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002
G. Cella; R. DeSalvo; V. Sannibale; Hareem Tariq; N. Viboud; A. Takamori
Abstract Next generation gravitational wave detectors, such as an advanced LIGO, will generally require improved sensitivity at low frequency. One of the principal challenges for low-frequency sensitivity is isolation from seismic motion. A mechanical seismic isolation filter specifically studied for the next generation of the LIGO detectors, based on a geometric anti-spring concept, has been developed with the aim to provide thermal noise limited sensitivity to frequencies of 10 Hz . The design and the performance of the isolation filter, mainly for the vertical degree of freedom are discussed.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999
A. Bertolini; G. Cella; R. DeSalvo; V. Sannibale
Abstract The achievement of low resonance frequency in vertical action oscillators is the most difficult of the basic ingredients for seismic noise attenuation filters. These oscillations are achieved by means of “anti-springs” systems coupled with more classical suspension springs. Magnetic anti-springs have been used so far. Geometric anti-springs have been studied and the concept tested in this work, opening the way to a simpler and better performance seismic attenuation filters.
International Europhysics Conference on High Energy Physics HEP 93 | 1997
J.-Y. Vinet; F. Bondu; A. Brillet; F. Cleva; H. Heitmann; L. Latrach; N. Man; M. Pham Tu; M. Barsuglia; V. Brisson; F. Cavalier; M. Davier; P. Hello; P. Heusse; F. Lediberder; P. Marin; B. Caron; A. Dominjon; C. Drezen; R. Flaminio; X. Grave; F. Marion; L. Massonet; C. Mehmel; R. Morand; B. Mours; V. Sannibale; M. Yvert; L. Dognin; P. Ganau
The Virgo project is a Italian-French collaboration aiming at the construction of a long baseline interferometric antenna for the detection of gravitational radiation signals of cosmic origin. We describe the principles of the system, and high-light the technical challenges we need to overcome for reaching a sensitiity as low as 10−23Hz−1/2.The gravitational clustering of collisionless particles in an expanding universe is modelled using some simple physical ideas. I show that it is possible to understand the nonlinear clustering in terms of three well defined regimes: (1) linear regime; (2) quasilinear regime which is dominated by scale-invariant radial infall and (3) nonlinear regime dominated by nonradial motions and mergers. Modelling each of these regimes separately I show how the nonlinear two point correlation function can be related to the linear correlation function in hierarchical models. This analysis leads to results which are in good agreement with numerical simulations thereby providing an explanation for numerical results. Using this model and some simple extensions, it is possible to understand the transfer of power from large to small scales and the behaviour of higher order correlation functions. The ideas presented here will also serve as a powerful analytical tool to investigate nonlinear clustering in different models.
Classical and Quantum Gravity | 2009
Koji Arai; Ryutaro Takahashi; Daisuke Tatsumi; K. Izumi; Yaka Wakabayashi; H. Ishizaki; Mitsuhiro Fukushima; Toshitaka Yamazaki; M. K. Fujimoto; A. Takamori; Kimio Tsubono; R. DeSalvo; A. Bertolini; S. Márka; V. Sannibale; Takashi Uchiyama; O. Miyakawa; Shinji Miyoki; K. Agatsuma; Takanori Saito; Masatake Ohashi; Kenta Kuroda; I. Nakatani; Souichi Telada; Kazuhiro Yamamoto; Takayuki Tomaru; T. Suzuki; T. Haruyama; Nobuaki Sato; Akira Yamamoto
The Large-scale Cryogenic Gravitational wave Telescope (LCGT) is planned as a future Japanese project for gravitational wave detection. A 3 km interferometer will be built in an underground mine at Kamioka. Cryogenic sapphire mirrors are going to be employed for the test masses. For the demonstration of LCGT technologies, two prototype interferometers, TAMA300 and CLIO, are being developed. This paper describes the current status of the LCGT project and the two prototype interferometers.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002
Chenyang Wang; Hareem Tariq; R. DeSalvo; Yukiyoshi Iida; S. Márka; Yuhiko Nishi; V. Sannibale; A. Takamori
We have designed, tested and implemented a UHV-compatible, low-noise, non-contacting force actuator for DC positioning and inertial damping of the rigid body resonances of the Seismic Attenuation System (SAS) designed for the TAMA Gravitational Wave Interferometer. The actuator fully satisfies the stringent zero-force-gradient requirements that are necessary to prevent re-injecting seismic noise into the SAS chain. The actuators closed magnetic field design makes for particularly low power requirements, and low susceptibility to external perturbations. The actuator retains enough strength to absorb seismic perturbations even during small earthquakes.
Classical and Quantum Gravity | 2002
S. Márka; A. Takamori; Masaki Ando; A. Bertolini; G. Cella; R. DeSalvo; Mitsuhiro Fukushima; Yukiyoshi Iida; Florian Jacquier; Seiji Kawamura; Yuhiko Nishi; Kenji Numata; V. Sannibale; Kentaro Somiya; Ryutaro Takahashi; Hareem Tariq; Kimio Tsubono; Jose Ugas; Nicolas Viboud; Chenyang Wang; Hiroaki Yamamoto; Tatsuo Yoda
The TAMA SAS seismic attenuation system was developed to provide the extremely high level of seismic isolation required by the next generation of interferometric gravitational wave detectors to achieve the desired sensitivity at low frequencies. Our aim was to provide good performance at frequencies above ~10 Hz, while utilizing only passive subsystems in the sensitive frequency band of the TAMA interferometric gravitational wave detectors. The only active feedback is relegated below 6 Hz and it is used to damp the rigid body resonances of the attenuation chain. Simulations, based on subsystem performance characterizations, indicate that the system can achieve rms mirror residual motion measured in a few tens of nanometres. We will give a brief overview of the subsystems and point out some of the characterization results, supporting our claims of achieved performance. SAS is a passive, UHV compatible and low cost system. It is likely that extremely sensitive experiments in other fields will also profit from our study.