Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. Sipala is active.

Publication


Featured researches published by V. Sipala.


IEEE Transactions on Nuclear Science | 2010

Characterization of a Silicon Strip Detector and a YAG:Ce Calorimeter for a Proton Computed Radiography Apparatus

D. Menichelli; M. Bruzzi; M. Bucciolini; G. Candiano; G.A.P. Cirrone; L. Capineri; C. Civinini; G. Cuttone; D. Lo Presti; L. Marrazzo; S. Pallotta; N. Randazzo; V. Sipala; C. Talamonti; S. Valentini; S. Pieri; Valentina Reggioli; M. Brianzi; M. Tesi

Today, there is a steadily growing interest in the use of proton beams for tumor therapy, as they permit to tightly shape the dose delivered to the target reducing the exposure of the surrounding healthy tissues. Nonetheless, accuracy in the determination of the dose distribution in proton-therapy is up to now limited by the uncertainty in stopping powers, which are presently calculated from the photon attenuation coefficients measured by X-ray tomography. Proton computed tomography apparatus (pCT) has been proposed to directly measure the stopping power and reduce this uncertainty. Main problem with proton imaging is the blurring effect introduced by multiple Coulomb scattering: single proton tracking is a promising technique to face this difficulty. As a first step towards a pCT system, we designed a proton radiography (pCR) prototype based on a silicon microstrip tracker (to characterize particle trajectories) and a segmented YAG:Ce calorimeter (to measure their residual energy). Aim of the system is to detect protons with a ~1 MHz particle rate of and with kinetic energy in the range 250-270 MeV, high enough to pass through human body. Design and development of the pCR prototype, as well as the characterization of its single components, are described in this paper.


IEEE Transactions on Nuclear Science | 2007

Monte Carlo Studies of a Proton Computed Tomography System

G.A.P. Cirrone; G. Cuttone; G. Candiano; F. Di Rosa; S. Lo Nigro; D. Lo Presti; N. Randazzo; V. Sipala; M. Bruzzi; D. Menichelli; M. Scaringella; V. Bashkirov; R.D. Williams; H. F-W. Sadrozinski; J. Heimann; J. Feldt; N. Blumenkrantz; C. Talamonti; Reinhard W. Schulte

Proton therapy is a precise forms of radiation therapy that makes use of high energy proton compared to the conventional, more commonly used and less precise x-ray and electron beams. On the other hand, to fully exploit the proton therapy advantages, very accurate quality controls of the treatments are required. These are mainly related to the dose calculations and treatment planning. Actually dose calculations are routinely performed on the basis of X-ray computed tomography while a big improvement could be obtained with the direct use of protons as the imaging system. In this work we report the results of Monte Carlo simulations for the study of an imaging system based on the use of high energy protons: the proton computed tomography (pCT). The main limitation of the pCT and the current adopted technical solutions, based on the use of the most likely path (MLP) approximation are illustrated. Simulation results are compared with experimental data obtained with a first prototype of pCT system tested with 200 MeV proton beams available at the Loma Linda University Medical Center (LLUMC) (CA).


Astroparticle Physics | 2010

Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

Sebastiano Aiello; Fabrizio Ameli; I. Amore; M. Anghinolfi; A. Anzalone; G.C. Barbarino; M. Battaglieri; M. Bazzotti; A. Bersani; Nicolo' Beverini; S. Biagi; M. Bonori; B. Bouhadef; M. Brunoldi; G. Cacopardo; A. Capone; L. Caponetto; G. Carminati; T. Chiarusi; M. Circella; R. Cocimano; R. Coniglione; M. Cordelli; M. Costa; A. D’Amico; G. De Bonis; C. De Marzo; G. De Rosa; G. De Ruvo; R. De Vita

Abstract The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared to Monte Carlo simulations.


IEEE Transactions on Nuclear Science | 2008

The Data Acquisition and Transport Design for NEMO Phase 1

F. Ameli; S. Aiello; A. Aloisio; I. Amore; M. Anghinolfi; A. Anzalone; C. Avanzini; G.C. Barbarino; E. Barbarito; M. Battaglieri; M. Bazzotti; R. Bellotti; A. Bersani; Nicolo' Beverini; S. Biagi; M. Bonori; B. Bouhadef; G. Cacopardo; A. Capone; L. Caponetto; G. Carminati; B. Cassano; E. Castorina; A. Ceres; T. Chiarusi; M. Circella; R. Cocimano; R. Coniglione; M. Cordelli; M. Costa

The NEMO collaboration proposes to build an underwater neutrino telescope located South-East off the Sicily coast. This paper describes the concepts underlying the communication link design going over the whole data acquisition and transport from the front-end electronics to the module sending data on-shore through a fiber optic link which relies on Dense Wavelength Division Multiplexing. An on-shore board, plugged into a PC, extracts and distributes data both to first-level trigger and control systems. Underwater apparatus monitoring and controls are guaranteed by oceanographic instruments and dedicated sensors, whose data are packed and sent back to shore using the same optical link. The communication is fully bidirectional, allowing transmission of timing and control commands. The architecture described here provides a complete real-time data transport layer between the onshore laboratory and the underwater detector. During winter 2006 a first prototype of the apparatus has been deployed: calibration results from the currently working system are here reported.


ieee nuclear science symposium | 2005

Prototype tracking studies for proton CT

F. Feldt; J. Heimann; N. Blumenkrantz; D. Lucia; Hartmut Sadrozinski; A. Seiden; W. Sowerwine; D. C. Williams; V. Bashkirov; Reinhard W. Schulte; M. Bruzzi; D. Menichelli; M. Scaringella; G.A.P. Cirrone; G. Cuttone; N. Randazzo; V. Sipala; D. Lo Presti

As part of a program to investigate the feasibility of proton computed tomography, the most likely path (MLP) of protons inside an absorber was measured in a beam experiment using a silicon strip detector set-up with high position and angular resolution. The locations of 200 MeV protons were measured at three different absorber depth of PolyMethylMethAcrylate-PMMA (3.75, 6.25 and 12.5 cm) and binned in terms of the displacement and the exit angle measured behind the absorber. The observed position distributions were compared to theoretical predictions showing that the location of the protons can be predicted with an accuracy of better than 0.5 mm


Journal of Instrumentation | 2013

A proton Computed Tomography system for medical applications

V. Sipala; M. Bruzzi; M. Bucciolini; M. Carpinelli; G.A.P. Cirrone; C. Civinini; G. Cuttone; D. Lo Presti; S. Pallotta; C. Pugliatti; N. Randazzo; F. Romano; M. Scaringella; C. Stancampiano; C. Talamonti; M. Tesi; Eleonora Vanzi; M. Zani

Proton Computed Tomography (pCT) can improve the accuracy of both patient positioning and dose calculation in proton therapy, enabling to accurately reconstruct the electron density distribution of irradiated tissues. A pCT prototype, equipped with a silicon tracker and a YAG:Ce calorimeter, has been manufactured by an Italian collaboration. First tests under proton beam allowed obtaining good quality tomographic images of a non-homogeneous phantom. Manufacturing of a new large area system with real-time data acquisition is under way.


Journal of Instrumentation | 2014

A proton Computed Tomography based medical imaging system

M. Scaringella; M. Bruzzi; M. Bucciolini; M. Carpinelli; G.A.P. Cirrone; C. Civinini; G. Cuttone; D. Lo Presti; S. Pallotta; C. Pugliatti; N. Randazzo; F. Romano; V. Sipala; C. Stancampiano; C. Talamonti; Eleonora Vanzi; M. Zani

This paper reports on the activity of the INFN PRIMA/RDH collaboration in the development of proton Computed Tomography (pCT) systems based on single proton tracking and residual energy measurement. The systems are made of a silicon microstrip tracker and a YAG:Ce crystal calorimeter to measure single protons trajectory and residual energy, respectively. A first prototype of pCT scanner, with an active area of about 5 × 5 cm2 and a data rate capability of 10 kHz, has been constructed and characterized with 62 MeV protons at INFN Laboratori Nazionali del Sud in Catania (Italy) and with 180 MeV protons at The Svedberg Laboratory (TSL) in Uppsala (Sweden). Results of these measurements, including tomographic reconstructions of test phantoms, will be shown and discussed. An upgraded system with an extended field of view (up to ~ 5 × 20 cm2) and an increased event rate capability up to one MHz, presently under development, will be also described.


Journal of Instrumentation | 2012

Performance of upstream interaction region detectors for the FIRST experiment at GSI

Z. Abou-Haidar; C. Agodi; M. A. G. Alvarez; M. Anelli; T. Aumann; G. Battistoni; A. Bocci; T.T. Böhlen; A. Boudard; Antonio Brunetti; M. Carpinelli; G.A.P. Cirrone; M. A. Cortés-Giraldo; G. Cuttone; M. De Napoli; M. Durante; J.P. Fernández-García; Ch. Finck; M.I. Gallardo; Bruno Golosio; E. Iarocci; Felice Iazzi; G. Ickert; R. Introzzi; D. Juliani; J. Krimmer; N. Kurz; M. Labalme; Y. Leifels; A. Le Fèvre

The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI has been designed to study carbon fragmentation, measuring 12C double differential cross sections (∂2σ/∂θ∂E) for different beam energies between 100 and 1000 MeV/u. The experimental setup integrates newly designed detectors in the, so called, Interaction Region around the graphite target. The Interaction Region upstream detectors are a 250 μm thick scintillator and a drift chamber optimized for a precise measurement of the ions interaction time and position on the target. In this article we review the design of the upstream detectors along with the preliminary results of the data taking performed on August 2011 with 400 MeV/u fully stripped carbon ion beam at GSI. Detectors performances will be reviewed and compared to those obtained during preliminary tests, performed with 500 MeV electrons (at the BTF facility in the INFN Frascati Laboratories) and 80 MeV/u protons and carbon ions (at the INFN LNS Laboratories in Catania).


International Journal of Modern Physics A | 2007

NEMO: A PROJECT FOR A KM3 UNDERWATER DETECTOR FOR ASTROPHYSICAL NEUTRINOS IN THE MEDITERRANEAN SEA

I. Amore; S. Aiello; M. Ambriola; F. Ameli; M. Anghinolfi; A. Anzalone; G.C. Barbarino; E. Barbarito; M. Battaglieri; R. Bellotti; Nicolo' Beverini; M. Bonori; B. Bouhadef; M. Brescia; G. Cacopardo; F. Cafagna; A. Capone; L. Caponetto; E. Castorina; A. Ceres; T. Chiarusi; M. Circella; R. Cocimano; R. Coniglione; M. Cordelli; M. Costa; S. Cuneo; A. D'Amico; G. De Bonis; C. De Marzo

The status of the project is described: the activity on long term characterization of water optical and oceanographic parameters at the Capo Passero site candidate for the Mediterranean km3 neutrino telescope; the feasibility study; the physics performances and underwater technology for the km3; the activity on NEMO Phase 1, a technological demonstrator that has been deployed at 2000 m depth 25 km offshore Catania; the realization of an underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).


ieee nuclear science symposium | 2011

Characterization technique of sub-millimeter scintillating fibers

Domenico Lo Presti; G. V. Russo; E. Leonora; S. Aiello; N. Randazzo; V. Sipala; F. Longhitano

The characterization of sub-millimeter scintillating optical fibers involves the measurement of the attenuation length, which is one of the main properties together with the yield and the trapping efficiency, given the use of these fibers in the design of particle detectors. Every technique considered allows for the optical coupling of the scintillating fibers to suitable photo sensors, at one or both ends. What essentially changes is the cause of scintillation light within the fibers, which comes from a UV laser or radioactive source. We have developed an alternative technique that is based on the use of cosmic rays as a uniform scintillation source. In this paper we present the results of this method compared to others obtained using standard ones.

Collaboration


Dive into the V. Sipala's collaboration.

Researchain Logo
Decentralizing Knowledge