V. Trevor Forsyth
Keele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Trevor Forsyth.
Biophysical Journal | 2003
Douglas S. Fudge; Kenn H. Gardner; V. Trevor Forsyth; Christian Riekel; John M. Gosline
Intermediate filaments (IFs) impart mechanical integrity to cells, yet IF mechanics are poorly understood. It is assumed that IFs in cells are as stiff as hard alpha-keratin, F-actin, and microtubules, but the high bending flexibility of IFs and the low stiffness of soft alpha-keratins suggest that hydrated IFs may be quite soft. To test this hypothesis, we measured the tensile mechanics of the keratin-like threads from hagfish slime, which are an ideal model for exploring the mechanics of IF bundles and IFs because they consist of tightly packed and aligned IFs. Tensile tests suggest that hydrated IF bundles possess low initial stiffness (E(i) = 6.4 MPa) and remarkable elasticity (up to strains of 0.34), which we attribute to soft elastomeric IF protein terminal domains in series with stiffer coiled coils. The high tensile strength (180 MPa) and toughness (130 MJ/m(3)) of IF bundles support the notion that IFs lend mechanical integrity to cells. Their long-range elasticity suggests that IFs may also allow cells to recover from large deformations. X-ray diffraction and congo-red staining indicate that post-yield deformation leads to an irreversible alpha-->beta conformational transition in IFs, which leads to plastic deformation, and may be used by cells as a mechanosensory cue.
Plant Physiology | 2013
Lynne H. Thomas; V. Trevor Forsyth; Adriana Šturcová; Craig J Kennedy; Roland P. May; Clemens M. Altaner; David C. Apperley; Timothy James Wess; Michael C. Jarvis
In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production.
Biomacromolecules | 2008
Yoshiharu Nishiyama; Glenn P. Johnson; Alfred D. French; V. Trevor Forsyth; Paul Langan
In the crystal structure of cellulose I beta, disordered hydrogen bonding can be represented by the average of two mutually exclusive hydrogen bonding schemes that have been designated A and B. An unanswered question is whether A and B interconvert dynamically, or whether they are static but present in different regions of the microfibril (giving temporally or a spatially averaged structures, respectively). We have used neutron crystallographic techniques to determine the occupancies of A and B at 295 and 15 K, quantum mechanical calculations to compare the energies of A and B, and molecular dynamics calculations to look at the stability of A. Microfibrils are found to have most chains arranged in a crystalline I beta structure with hydrogen bonding scheme A. Smaller regions of static disorder exist, perhaps at defects within or between crystalline domains in which the hydrogen bonding is complex but with certain features that are found in B.
Langmuir | 2012
Ron Orbach; Iris Mironi-Harpaz; Lihi Adler-Abramovich; Estelle Mossou; Edward P. Mitchell; V. Trevor Forsyth; Ehud Gazit; Dror Seliktar
Biocompatible hydrogels are of high interest as a class of biomaterials for tissue engineering, regenerative medicine, and controlled drug delivery. These materials offer three-dimensional scaffolds to support the growth of cells and development of hierarchical tissue structures. Fmoc-peptides were previously demonstrated as attractive building blocks for biocompatible hydrogels. Here, we further investigate the biophysical properties of Fmoc-peptide-based hydrogels for medical applications. We describe the structural and thermal properties of these Fmoc-peptides, as well as their self-assembly process. Additionally, we study the role of interactions between aromatic moieties in the self-assembly process and on the physical and structural properties of the hydrogels.
Biopolymers | 2009
Emmanouil Kasotakis; Estelle Mossou; Lihi Adler-Abramovich; Edward P. Mitchell; V. Trevor Forsyth; Ehud Gazit; Anna Mitraki
The ability to develop a rational basis for the binding of inorganic materials to specific binding sites within self‐assembling biological scaffolds has important applications in nanobiotechnology. Amyloid‐forming peptides are a class of such scaffolds and show enormous potential as templates for the fabrication of low resistance, conducting nanowires. Here we report the use of a self‐assembling peptide building block as scaffold for the systematic introduction of metal‐binding residues at specific locations within the structure. The octapeptide NSGAITIG (Asparagine‐Serine‐Glycine‐Alanine‐Isoleucine‐Threonine‐Isoleucine‐Glycine) from the fiber protein of adenovirus has been identified in previous structural studies as an elementary fibril‐forming building block. Using this building block as a scaffold, we have designed three new cysteine‐containing octa‐peptides to study their eventual fibril‐forming ability and potential templating of metal nanoparticles. We find that the cysteine substitutions do not alter the fibril‐forming potential of the peptides, and that the fibrils formed bind efficiently to silver, gold, and platinum nanoparticles; furthermore, we report unexpected behavior of serine in nucleating gold and platinum nanoparticles. We find that combination of cysteine and serine residues projecting from adjacent sites on a peptide scaffold represents a potentially useful strategy in nucleating inorganic materials. The ability to reliably produce metal‐coated fibrils is a vital first step towards the exploitation of these fibrils as conducting nanowires with applications in nano‐circuitry. Short, biologically inspired self‐assembling peptide scaffolds derived from natural fibrous proteins with known three‐dimensional structure may provide a viable approach towards the rational design of inorganic nanowires.
Biophysical Journal | 2011
Stephan L. Grage; Asbed M. Keleshian; Tamta Turdzeladze; Andrew R. Battle; Wee C. Tay; Roland P. May; Stephen A. Holt; Sonia Antoranz Contera; Michael Haertlein; Martine Moulin; Prithwish Pal; Paul R. Rohde; V. Trevor Forsyth; Anthony Watts; Kerwyn Casey Huang; Anne S. Ulrich; Boris Martinac
Mechanosensitive channels allow bacteria to respond to osmotic stress by opening a nanometer-sized pore in the cellular membrane. Although the underlying mechanism has been thoroughly studied on the basis of individual channels, the behavior of channel ensembles has yet to be elucidated. This work reveals that mechanosensitive channels of large conductance (MscL) exhibit a tendency to spatially cluster, and demonstrates the functional relevance of clustering. We evaluated the spatial distribution of channels in a lipid bilayer using patch-clamp electrophysiology, fluorescence and atomic force microscopy, and neutron scattering and reflection techniques, coupled with mathematical modeling of the mechanics of a membrane crowded with proteins. The results indicate that MscL forms clusters under a wide range of conditions. MscL is closely packed within each cluster but is still active and mechanosensitive. However, the channel activity is modulated by the presence of neighboring proteins, indicating membrane-mediated protein-protein interactions. Collectively, these results suggest that MscL self-assembly into channel clusters plays an osmoregulatory functional role in the membrane.
Journal of Structural Biology | 2011
Silvia Russi; Douglas H. Juers; Juan Sanchez-Weatherby; Erika Pellegrini; Estelle Mossou; V. Trevor Forsyth; Julien Huet; Alexandre Gobbo; Franck Felisaz; Raphael Moya; Sean McSweeney; Stephen Cusack; Florent Cipriani; Matthew W. Bowler
The increase in the number of large multi-component complexes and membrane protein crystal structures determined over the last few years can be ascribed to a number of factors such as better protein expression and purification systems, the emergence of high-throughput crystallization techniques and the advent of 3rd generation synchrotron sources. However, many systems tend to produce crystals that can be extremely heterogeneous in their diffraction properties. This prevents, in many cases, the collection of diffraction data of sufficient quality to yield useful biological or phase information. Techniques that can increase the diffraction quality of macromolecular crystals can therefore be essential in the successful conclusion of these challenging projects. No technique is universal but encouraging results have been recently achieved by carrying out the controlled dehydration of crystals of biological macromolecules. A new device that delivers a stream of air with a precisely controlled relative humidity to the complicated sample environment found at modern synchrotron beamlines has been conceived at the EMBL Grenoble and developed by the EMBL and the ESRF as part of the SPINE2 complexes project, a European Commission funded protein structure initiative. The device, the HC1b, has been available for three years at the ESRF macromolecular crystallography beamlines and many systems have benefitted from on-line controlled dehydration. Here we describe a standard dehydration experiment, highlight some successful cases and discuss the different possible uses of the device.
ACS Chemical Neuroscience | 2013
Erik Hellstrand; Marie Grey; Marie-Louise Ainalem; John Ankner; V. Trevor Forsyth; Giovanna Fragneto; Michael Haertlein; Marie-Thérèse Dauvergne; Hanna Nilsson; Patrik Brundin; Sara Linse; Tommy Nylander; Emma Sparr
An amyloid form of the protein α-synuclein is the major component of the intraneuronal inclusions called Lewy bodies, which are the neuropathological hallmark of Parkinsons disease (PD). α-Synuclein is known to associate with anionic lipid membranes, and interactions between aggregating α-synuclein and cellular membranes are thought to be important for PD pathology. We have studied the molecular determinants for adsorption of monomeric α-synuclein to planar model lipid membranes composed of zwitterionic phosphatidylcholine alone or in a mixture with anionic phosphatidylserine (relevant for plasma membranes) or anionic cardiolipin (relevant for mitochondrial membranes). We studied the adsorption of the protein to supported bilayers, the position of the protein within and outside the bilayer, and structural changes in the model membranes using two complementary techniques-quartz crystal microbalance with dissipation monitoring, and neutron reflectometry. We found that the interaction and adsorbed conformation depend on membrane charge, protein charge, and electrostatic screening. The results imply that α-synuclein adsorbs in the headgroup region of anionic lipid bilayers with extensions into the bulk but does not penetrate deeply into or across the hydrophobic acyl chain region. The adsorption to anionic bilayers leads to a small perturbation of the acyl chain packing that is independent of anionic headgroup identity. We also explored the effect of changing the area per headgroup in the lipid bilayer by comparing model systems with different degrees of acyl chain saturation. An increase in area per lipid headgroup leads to an increase in the level of α-synuclein adsorption with a reduced water content in the acyl chain layer. In conclusion, the association of α-synuclein to membranes and its adsorbed conformation are of electrostatic origin, combined with van der Waals interactions, but with a very weak correlation to the molecular structure of the anionic lipid headgroup. The perturbation of the acyl chain packing upon monomeric protein adsorption favors association with unsaturated phospholipids preferentially found in the neuronal membrane.
Nature Nanotechnology | 2015
Or Berger; Lihi Adler-Abramovich; Michal Levy-Sakin; Assaf Grunwald; Yael Liebes-Peer; Mor Bachar; Ludmila Buzhansky; Estelle Mossou; V. Trevor Forsyth; Tal Schwartz; Yuval Ebenstein; Felix Frolow; Linda J. W. Shimon; Fernando Patolsky; Ehud Gazit
The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.
PLOS ONE | 2012
Daisuke Sawada; Yoshiharu Nishiyama; Paul Langan; V. Trevor Forsyth; Satoshi Kimura; Masahisa Wada
The complete crystal structure (including hydrogen) of dihydrate β-chitin, a homopolymer of N-acetylglucosamine hydrate, was determined using high-resolution X-ray and neutron fiber diffraction data collected from bathophilous tubeworm Lamellibrachia satsuma. Two water molecules per N-acetylglucosamine residue are clearly localized in the structure and these participate in most of the hydrogen bonds. The conformation of the labile acetamide groups and hydroxymethyl groups are similar to those found in anhydrous β-chitin, but more relaxed. Unexpectedly, the intrachain O3-H…O5 hydrogen bond typically observed for crystalline β,1–4 glycans is absent, providing important insights into its relative importance and its relationship to solvation.