Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V. V. Dobrovitski is active.

Publication


Featured researches published by V. V. Dobrovitski.


Science | 2010

Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath

G.J. de Lange; Zhi-Hui Wang; D. Riste; V. V. Dobrovitski; R. Hanson

Avoiding Loss in a Quantum System Single electron spins in solid-state environments have been explored as candidates for quantum information storage and computation; however, they often interact strongly with their surroundings and lose the stored information on the time scale of pico- to milliseconds. Dynamical decoupling schemes have been introduced to “undo” the effects of this interaction by applying a sequence of control pulses that reverse the undesirable evolution of the system. De Lange et al. (p. 60, published online 9 September) tested several decoupling schemes on a nitrogen vacancy center in diamond and found that a scheme with evenly spaced pulses with double-axis decoupling could prolong the coherence time of an arbitrary spin state up to 25-fold. The coherence time of single spins is extended by a sequence of microwave pulses. Controlling the interaction of a single quantum system with its environment is a fundamental challenge in quantum science and technology. We strongly suppressed the coupling of a single spin in diamond with the surrounding spin bath by using double-axis dynamical decoupling. The coherence was preserved for arbitrary quantum states, as verified by quantum process tomography. The resulting coherence time enhancement followed a general scaling with the number of decoupling pulses. No limit was observed for the decoupling action up to 136 pulses, for which the coherence time was enhanced more than 25 times compared to that obtained with spin echo. These results uncover a new regime for experimental quantum science and allow us to overcome a major hurdle for implementing quantum information protocols.


Science | 2008

Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath

R. Hanson; V. V. Dobrovitski; Adrian E. Feiguin; Oliver Gywat; D. D. Awschalom

Phase coherence is a fundamental concept in quantum mechanics. Understanding the loss of coherence is paramount for future quantum information processing. We studied the coherent dynamics of a single central spin (a nitrogen-vacancy center) coupled to a bath of spins (nitrogen impurities) in diamond. Our experiments show that both the internal interactions of the bath and the coupling between the central spin and the bath can be tuned in situ, allowing access to regimes with surprisingly different behavior. The observed dynamics are well explained by analytics and numerical simulations, leading to valuable insight into the loss of coherence in spin systems. These measurements demonstrate that spins in diamond provide an excellent test bed for models and protocols in quantum information.


Science | 2009

Gigahertz Dynamics of a Strongly Driven Single Quantum Spin

Gregory D. Fuchs; V. V. Dobrovitski; D.M. Toyli; F. J. Heremans; D. D. Awschalom

Quick Spin Flips Quantum computation holds the tantalizing promise of vastly improving the efficiency of traditional computers. Among the many solid-state candidates for storing and manipulating quantum information, nitrogen vacancy centers in diamond are especially attractive because they can be used at room temperature and stay operational for milliseconds at a time. To use this coherence time efficiently, it is important to achieve fast manipulation of the spins in the system. Fuchs et al. (p. 1520, published online 19 November; see the Perspective by Gerardot and Öhberg) used pulses of strong microwave magnetic field to probe the dynamics of single spins in a nitrogen vacancy center. In this “strong-driving” nonlinear regime, extremely quick spin flips of less than a nanosecond in duration were observed, offering the possibility that up to a million operations could be performed on a single spin during its coherence time. Fast spin-flips are observed in the nitrogen vacancy centers in diamond. Two-level systems are at the core of numerous real-world technologies such as magnetic resonance imaging and atomic clocks. Coherent control of the state is achieved with an oscillating field that drives dynamics at a rate determined by its amplitude. As the strength of the field is increased, a different regime emerges where linear scaling of the manipulation rate breaks down and complex dynamics are expected. By calibrating the spin rotation with an adiabatic passage, we have measured the room-temperature “strong-driving” dynamics of a single nitrogen vacancy center in diamond. With an adiabatic passage to calibrate the spin rotation, we observed dynamics on sub-nanosecond time scales. Contrary to conventional thinking, this breakdown of the rotating wave approximation provides opportunities for time-optimal quantum control of a single spin.


Nature | 2012

Decoherence-protected quantum gates for a hybrid solid-state spin register

T. van der Sar; Zhi-Hui Wang; Machiel Blok; Hannes Bernien; T. H. Taminiau; D.M. Toyli; Daniel A. Lidar; D. D. Awschalom; R. Hanson; V. V. Dobrovitski

Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key challenge for solid-state quantum information processing. An idle quantum bit (qubit) can be efficiently insulated from the outside world by dynamical decoupling, as has recently been demonstrated for individual solid-state qubits. However, protecting qubit coherence during a multi-qubit gate is a non-trivial problem: in general, the decoupling disrupts the interqubit dynamics and hence conflicts with gate operation. This problem is particularly salient for hybrid systems, in which different types of qubit evolve and decohere at very different rates. Here we present the integration of dynamical decoupling into quantum gates for a standard hybrid system, the electron–nuclear spin register. Our design harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate operation and decoupling. We experimentally demonstrate these gates using a two-qubit register in diamond operating at room temperature. Quantum tomography reveals that the qubits involved in the gate operation are protected as accurately as idle qubits. We also perform Grover’s quantum search algorithm, and achieve fidelities of more than 90% even though the algorithm run-time exceeds the electron spin dephasing time by two orders of magnitude. Our results directly allow decoherence-protected interface gates between different types of solid-state qubit. Ultimately, quantum gates with integrated decoupling may reach the accuracy threshold for fault-tolerant quantum information processing with solid-state devices.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond

D.M. Toyli; Charles F. de las Casas; David J. Christle; V. V. Dobrovitski; D. D. Awschalom

We demonstrate fluorescence thermometry techniques with sensitivities approaching 10 mK⋅Hz−1/2 based on the spin-dependent photoluminescence of nitrogen vacancy (NV) centers in diamond. These techniques use dynamical decoupling protocols to convert thermally induced shifts in the NV centers spin resonance frequencies into large changes in its fluorescence. By mitigating interactions with nearby nuclear spins and facilitating selective thermal measurements, these protocols enhance the spin coherence times accessible for thermometry by 45-fold, corresponding to a 7-fold improvement in the NV center’s temperature sensitivity. Moreover, we demonstrate these techniques can be applied over a broad temperature range and in both finite and near-zero magnetic field environments. This versatility suggests that the quantum coherence of single spins could be practically leveraged for sensitive thermometry in a wide variety of biological and microscale systems.


Nature Communications | 2013

Polytype control of spin qubits in silicon carbide.

Abram L. Falk; Bob B. Buckley; Greg Calusine; William F. Koehl; V. V. Dobrovitski; Alberto Politi; Christian A. Zorman; Philip X.-L. Feng; D. D. Awschalom

Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to ‘designer’ spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including states in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron–electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent states, these interactions provide a route to dipole-coupled networks of separately addressable spins.


Physical Review Letters | 2011

Single-Spin Magnetometry with Multipulse Sensing Sequences

G.J. de Lange; D. Ristè; V. V. Dobrovitski; Ronald K. Hanson

We experimentally demonstrate single-spin magnetometry with multipulse sensing sequences. The use of multipulse sequences can greatly increase the sensing time per measurement shot, resulting in enhanced ac magnetic field sensitivity. We theoretically derive and experimentally verify the optimal number of sensing cycles, for which the effects of decoherence and increased sensing time are balanced. We perform these experiments for oscillating magnetic fields with fixed phase as well as for fields with random phase. Finally, by varying the phase and frequency of the ac magnetic field, we measure the full frequency-filtering characteristics of different multipulse schemes and discuss their use in magnetometry applications.


Physical Review Letters | 2008

Excited-State Spectroscopy Using Single Spin Manipulation in Diamond

Gregory D. Fuchs; V. V. Dobrovitski; R. Hanson; A. Batra; C. D. Weis; T. Schenkel; D. D. Awschalom

We use single-spin resonant spectroscopy to study the spin structure in the orbital excited state of a diamond nitrogen-vacancy (N-V) center at room temperature. The data show that the excited-state spin levels have a zero-field splitting that is approximately half of the value of the ground state levels, a g factor similar to the ground state value, and a hyperfine splitting approximately 20x larger than in the ground state. In addition, the width of the resonances reflects the electronic lifetime in the excited state. We also show that the spin level splitting can significantly differ between N-V centers, likely due to the effects of local strain, which provides a pathway to control over the spin Hamiltonian and may be useful for quantum-information processing.


Physical Review Letters | 2012

Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin

T. H. Taminiau; J.J.T. Wagenaar; T. van der Sar; Fedor Jelezko; V. V. Dobrovitski; R. Hanson

We experimentally isolate, characterize, and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multipulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.


Physical Review E | 2003

Efficient scheme for numerical simulations of the spin-bath decoherence.

V. V. Dobrovitski; de Hans Raedt

We demonstrate that the Chebyshev expansion method is a very efficient numerical tool for studying spin-bath decoherence of quantum systems. We consider two typical problems arising in studying decoherence of quantum systems consisting of a few coupled spins: (i) determining the pointer states of the system and (ii) determining the temporal decay of quantum oscillations. As our results demonstrate, for determining the pointer states, the Chebyshev-based scheme is at least a factor of 8 faster than existing algorithms based on the Suzuki-Trotter decomposition. For problems of the second type, the Chebyshev-based approach is 3-4 times faster than the Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide spectrum of systems, with different spin baths and different Hamiltonians.

Collaboration


Dive into the V. V. Dobrovitski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. I. Katsnelson

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Hanson

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhi-Hui Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. H. Taminiau

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge