V. V. Grechnev
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. V. Grechnev.
Astronomy Reports | 2004
I. M. Chertok; V. A. Slemzin; S. V. Kuzin; V. V. Grechnev; O. I. Bugaenko; I. A. Zhitnik; A. P. Ignat'ev; A. A. Pertsov
We analyze large-scale solar activity following the eruption of a very powerful, geoeffective coronal mass ejection in the 23rd solar cycle, observed at 175, 284, and 304 Å on November 4, 2001, using data from the CORONAS-F/SPIRIT telescope. In particular, we have shown that the restructuring of the magnetic field above the eruption center was accompanied by the formation of a multicomponent post-eruptive arcade, which was observed in all three bands over many hours and had an extent of the order of 0.5R⊙. Two kinds of dimmings were observed, i.e., compact dimmings on either side of this arcade and channeled dimmings along some extended features beyond the active region. The intensity in the dimmings decreased by several tens of percent. The enhanced emission observed at the top of the post-eruptive arcade can be due to energy release in the course of magnetic reconnection high in the corona at the relaxation stage of the perturbed magnetic field to a new equilibrium state with a closed configuration. It can also be due to an enhanced emission measure because of the oblique direction of the line of sight crossing both loop tops and footpoint regions. The spatial coincidence of the main dimmings in lines corresponding to different temperatures indicates that a plasma outflow from the transition region and coronal structures with opened field lines are responsible for these dimmings. Variations in the plasma temperature associated with coronal mass ejections probably play an important role for some dimmings, which appear different in different lines.
Astronomy Reports | 2013
A. N. Afanasyev; A. M. Uralov; V. V. Grechnev
The propagation of a fast magnetoacoustic shock wave the magnetosphere of a solar active region is considered the nonlinear geometrical acoustics approximation. The magnetic field is modeled as a subphotospheric magnetic dipole embedded in the radial field of the quiet corona. The initial parameters of the wave are specified at a spherical surface in the depths of the active region. The wave propagates asymmetrically and is reflected from regions of the strong magnetic field, which results in the radiation of the wave energy predominantly upwards. Substantial gradients in the Alfvén speed facilitate appreciable growth in the wave intensity. Non-linear damping of the wave and divergence of the wave front lead to the opposite effect. Analysis of the joint action of these factors shows that a fast magnetoacoustic perturbation outgoing from an active region can correspond to a shock wave of moderate intensity. This supports the scenario in which the primary source of the coronal wave is an eruptive filament that impulsively expands in the magnetosphere of an active region.
Astronomy Reports | 2011
V. V. Grechnev; I. V. Kuzmenko; I. M. Chertok; A. M. Uralov
Plasma with a temperature close to the chromospheric one is ejected in solar eruptions. Such plasma can occult some part of emission of compact sources in active regions as well as quiet solar areas. Absorption phenomena can be observed in the microwave range as the so-called “negative bursts” and also in the He II 304 Å line. The paper considers three eruptive events associated with rather powerful flares. Parameters of absorbing material of an eruption are estimated from multi-frequency records of a “negative burst” in one event. “Destruction” of an eruptive filament and its dispersion like a cloud over a huge area observed as a giant depression of the 304 Å line emission has been revealed in a few events. One of the three currently known events is considered in this paper. One more of the events considered here is a possible candidate for such events.
Astronomy Reports | 2009
I. M. Chertok; V. V. Grechnev; N. S. Meshalkina
Studies of the extreme solar proton event of January 20, 2005 intensified the contest over of a long-standing problem: are solar cosmic rays arriving at the Earth accelerated by solar flares or by shocks preceding rapidly moving coronal mass ejections? Among the most important questions is the relationship between the energy spectra of the solar cosmic rays and the frequency spectra of flare microwave bursts. Some studies of previous solar-activity cycles have shown that such a relationship does exist, in particular, for protons with energies of tens of MeV. The present work analyzes this relation using data for 1987–2008. For flare events observed in the western half of the disk, there is a significant correlation between the index δ, which is equivalent to the power-law index of the integrated energy spectrum of 10–100 MeV protons detected near the Earth’s orbit, and radio burst parameters such as a ratio of peak fluxes S at two frequencies (for example, at 9 and 15 GHz) and a microwave peak frequency fm. Proton fluxes with hard (flat) energy spectra (δ ≤ 1.5) correspond to hard microwave frequency spectra (S9/S15 ≤ 1 and fm ≥ 15 GHz), while flares with soft radio spectra (S9/S15 ≥ 1.5 and fm ≤ 5 GHz) result in proton fluxes with soft (steep) energy spectra (δ ≥ 1.5–2). It is also shown that powerful high-frequency bursts with the hardest radio spectra (fm ≈ 30 GHz) can point at acceleration of significant proton fluxes in flares occurring in strong magnetic fields. These results argue that solar cosmic rays (or at least their initial impulses) are mainly accelerated in flares associated with impulsive and post-eruptive energy release, rather than in shocks driven by coronal mass ejections.
Solar System Research | 2006
V. V. Grechnev; S. V. Kuzin; A. M. Urnov; I. A. Zhitnik; A. M. Uralov; S. A. Bogachev; M. A. Livshits; O. I. Bugaenko; V. G. Zandanov; A. P. Ignat’ev; V. V. Krutov; S. N. Oparin; A. A. Pertsov; V. A. Slemzin; I.M. Chertok; A. I. Stepanov
Large-scale hot features were detected and observed several times high in the solar corona in the high-temperature Mg XII line (T = 5–20 MK, Tmax = 10 MK) with the soft X-ray telescope of the SPIRIT instrumentation complex onboard the CORONAS-F spacecraft. These features look like a spider up to 300000 km in size and live up to a few days. Their bright cores observed at heights were from 0.1 to 0.3 solar radii are connected with active regions by darker legs, giant loops. These features are disposed above arcades, which are simultaneously observed in cooler emission lines sensitive to temperatures of 1 to 2 MK. For the core of such a feature observed December 28–29, 2001, Zhitnik et al. (2003a) estimated an electron temperature of 10 MK and a number density of ne ≈ 1010 cm−3. A high activity and an association with eruptive phenomena were found for such features in continuous (up to 20-day) observations with a cadence of 0.6–1.7 min. In the present paper, we discuss the relation of such features to coronal structures, which are known from previous studies. We identify such off-limb features observed with SPIRIT on October 22, November 12, and December 28–29, 2001, with hot upper parts of post-eruptive arcades. The results of multifrequency analysis of these features based on the data obtained in various spectral ranges by different instruments (Yohkoh/SXT, SOHO/EIT, SOHO/LASCO, Nobeyama and SSRT radioheliographs) are briefly discussed. We address the physical conditions of the long-term existence of giant hot coronal structures. It is demonstrated that the post-eruptive energy release must be prolonged and the condition β ≪ 1 is not satisfied in these structures. It is argued that the so-called “standard flare model” should be better considered as a “standard post-eruptive energy release model.”
Astronomy Reports | 2009
I. V. Kuz’menko; V. V. Grechnev; A. M. Uralov
Solar events of June 15/16, 2000, June 1/2, 2002, February 6, 2002, and February 7, 2002, have been studied. These events probably belong to a poorly studied class of explosive eruptions. In such events disintegration of the magnetic structure of an eruptive filament and dispersing of its fragments as a cloud over a considerable part of the solar surface are possible. The analysis of SOHO/EIT extreme ultraviolet images obtained in the 195 Å and 304 Å channels has revealed the appearance of dimmings of various shapes and propagation of a coronal wave for June 1/2, 2002. In all the events the Nobeyama, Learmonth, and Ussuriysk observatories recorded negative radio bursts at several frequencies in the 1–10 GHz range. Most likely, these bursts were due to absorption of solar radio emission in clouds produced by fragments of filaments. Absorption of the solar background radiation can be observed as a depression of the emission in the 304 Å channel. A model has been developed, which permits one to estimate parameters of absorbing plasma such as temperature, optical thickness, area of the absorbing cloud, and its height above the chromosphere from the radio absorption observed at several frequencies. The obtained values of the temperature, 8000–9000 K, demonstrate that the absorber was the material of an erupted cool filament. The model estimate of the masses of the ejecta in the considered events were ∼1015 g, which is comparable to masses of typical filaments and coronal mass ejections.
Astronomy Reports | 2009
I. M. Chertok; V. V. Grechnev; A. M. Uralov
The event of September 12, 1999 is used to analyze large-scale disturbances associated with coronal mass ejections during the eruption of filaments outside active regions. The analysis is based on Hα filtergrams, EUV and soft X-ray images, and coronograph data. The filament eruption occurred in relatively weak magnetic fields, but was accompanied by larger-scale phenomena than flare events. During several hours after the eruption, a large-scale arcade developed, whose bases formed diverging flare-like ribbons. The volume of the event was bounded by an “EIT wave”, which was quasi-stationary at the solar surface and expanded above the limb. The event did not have an impulsive component; therefore the “EIT wave” above the limb was a magnetic structure, identified as the front of a coronal mass ejection by virtue of its shape, structural features, and kinematics. Three types of dimmings were observed within the areal of the event, cause by (a) the evacuation of plasma, (b) heating of plasma with its subsequent evacuation, and (c) the absorption of radiation in a system of filaments activated by the eruption. The fact that a dimming appeared due to plasma heating was revealed by its presence in soft X-rays, whereas the four EIT channels did not demonstrate this. This brings into question the correctness of certain conclusions drawn earlier based purely on EIT data. A transformation of magnetic fields brought about by the eruption also occurred in a stationary coronal hole adjacent to the areal of the event. The expansion of the coronal mass ejection was self-similar and characterized by a rapidly decreasing acceleration, which is not taken into account in the widely used polynomial approximation.
Solar System Research | 2009
S. A. Bogachev; V. V. Grechnev; S. V. Kuzin; V. A. Slemzin; O.I. Bugaenko; I. M. Chertok
More than 300000 solar images in the extreme ultraviolet and soft X-ray regions were obtained using two telescopes and four spectroheliometers of the CORONAS-F/SPIRIT device from August 2001 to December 2005. Methods for the processing of such data and extracting physical information are presented, taking into account the experience of processing and analysis of other space experiments on solar research. Some results on applications of the considered methods are presented.
Proceedings of the International Astronomical Union | 2004
V. A. Slemzin; V. V. Grechnev; Igor A. Zhitnik; S. V. Kuzin; I.M. Chertok; Sergey Bogachev; A.P. Ignatiev; A. A. Pertsov; D.V. Lisin
Advances in Space Research | 2006
S. V. Kuzin; I.M. Chertok; V. V. Grechnev; Vladimir A. Slemzin; O. I. Bugaenko; Igor A. Zhitnik; A.P. Ignat’ev; A. A. Pertsov