Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V.V. Mirnov is active.

Publication


Featured researches published by V.V. Mirnov.


Nuclear Fusion | 2009

Improved-confinement plasmas at high temperature and high beta in the MST RFP

B.E. Chapman; Joon-Wook Ahn; A. F. Almagri; J. K. Anderson; F. Bonomo; D. L. Brower; D. R. Burke; K.J. Caspary; D.J. Clayton; S.K. Combs; W.A. Cox; D. Craig; B.H. Deng; D.J. Den Hartog; W. X. Ding; F. Ebrahimi; D.A. Ennis; G. Fiksel; Cary Forest; C.R. Foust; P. Franz; S. Gangadhara; J.A. Goetz; M. C. Kaufman; J.G. Kulpin; A. V. Kuritsyn; Richard Magee; M. C. Miller; V.V. Mirnov; Paul Nonn

We have increased substantially the electron and ion temperatures, the electron density, and the total beta in plasmas with improved energy confinement in the Madison Symmetric Torus (MST). The improved confinement is achieved with a well-established current profile control technique for reduction of magnetic tearing and reconnection. A sustained ion temperature >1?keV is achieved with intensified reconnection-based ion heating followed immediately by current profile control. In the same plasmas, the electron temperature reaches 2?keV, and the electron thermal diffusivity drops to about 2?m2?s?1. The global energy confinement time is 12?ms. This and the reported temperatures are the largest values yet achieved in the reversed-field pinch (RFP). These results were attained at a density ~1019?m?3. By combining pellet injection with current profile control, the density has been quadrupled, and total beta has nearly doubled to a record value of about 26%. The Mercier criterion is exceeded in the plasma core, and both pressure-driven interchange and pressure-driven tearing modes are calculated to be linearly unstable, yet energy confinement is still improved. Transient momentum injection with biased probes reveals that global momentum transport is reduced with current profile control. Magnetic reconnection events drive rapid momentum transport related to large Maxwell and Reynolds stresses. Ion heating during reconnection events occurs globally, locally, or not at all, depending on which tearing modes are involved in the reconnection. To potentially augment inductive current profile control, we are conducting initial tests of current drive with lower-hybrid and electron-Bernstein waves.


Physics of Plasmas | 2009

Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch

A. Kuritsyn; G. Fiksel; A. F. Almagri; D. L. Brower; W. X. Ding; M. C. Miller; V.V. Mirnov; Stewart C. Prager; J.S. Sarff

In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly rel...


Physics of Plasmas | 2007

Finite electron temperature effects on interferometric and polarimetric measurements in fusion plasmas

V.V. Mirnov; W. X. Ding; D. L. Brower; M. A. Van Zeeland; T. N. Carlstrom

Finite electron temperature effects on interferometry and polarimetry measurements for burning plasma are considered with particular focus on analytically understanding the role of weakly relativistic effects. Development of a new iterative technique, in the limit when the probing wave frequency is much higher than the electron cyclotron frequency, yields the dispersion relation to lowest (linear) order in Te∕mec2⪡1. Perturbative treatment of the wave phase and polarization is presented in a form suitable for interpretation of experimental data. Previous analysis of the problem included nonrelativistic calculations only. Herein, it is shown that relativistic effects are equally important. Theoretical results are in agreement with computations and can be used for benchmarking of ray tracing codes. The implication of finite temperature effects on future burning plasma interferometer diagnostics is discussed.


Physics of Plasmas | 2005

Dynamo-free plasma in the reversed-field pinch : Advances in understanding the reversed-field pinch improved confinement mode

J. K. Anderson; J. R. Adney; A. F. Almagri; Arthur Blair; D. L. Brower; M. Cengher; B.E. Chapman; S. Choi; D. Craig; Diane Renee Demers; D.J. Den Hartog; B.H. Deng; W. X. Ding; F. Ebrahimi; D.A. Ennis; G. Fiksel; Cary Forest; P. Franz; J.A. Goetz; Richard William Harvey; D. J. Holly; B. Hudson; M. C. Kaufman; Thomas W. Lovell; L. Marrelli; P. Martin; K.J. McCollam; V.V. Mirnov; Paul Nonn; R. O’Connell

Generation and sustainment of the reversed field pinch (RFP) magnetic configuration normally relies on dynamo activity. The externally applied electric field tends to drive the equilibrium away from the relaxed, minimum energy state which is roughly described by a flat normalized parallel current density profile and is at marginal stability to tearing modes. Correlated fluctuations of magnetic field and velocity create a dynamo electric field which broadens the parallel current density profile, supplying the necessary edge current drive. These pervasive magnetic fluctuations are also responsible for destruction of flux surfaces, relegating the standard RFP to a stochastic-magnetic transport-limited device. Application of a tailored electric field profile (which matches the relaxed current density profile) allows sustainment of the RFP configuration without dynamo-driven edge current. The method used to ascertain that a dynamo-free RFP plasma has been created is reported here in detail. Several confinement...


Nuclear Fusion | 2005

Overview of results in the MST reversed field pinch experiment

Stewart C. Prager; J. R. Adney; A. F. Almagri; J. K. Anderson; Arthur Blair; D. L. Brower; M. Cengher; B.E. Chapman; S. Choi; D. Craig; S.K. Combs; Diane Renee Demers; D.J. Den Hartog; B.H. Deng; W. X. Ding; F. Ebrahimi; D.A. Ennis; G. Fiksel; Richard Fitzpatrick; C.R. Foust; Cary Forest; P. Franz; L. Frassinetti; J.A. Goetz; D. J. Holly; B. Hudson; M. C. Kaufman; Thomas W. Lovell; L. Marrelli; P. Martin

Confinement in the reversed field pinch (RFP) has been shown to increase strongly with current profile control. The MST RFP can operate in two regimes: the standard regime with a naturally occurring current density profile, robust reconnection and dynamo activity; and the improved confinement regime with strong reduction in reconnection, dynamo and transport. New results in standard plasmas include the observation of a strong two-fluid Hall effect in reconnection and dynamo, the determination that the m = 0 edge resonant mode is nonlinearly driven, and the determination that tearing modes can lock to the wall via eddy currents in the shell. New results in improved confinement plasmas include observations that such plasmas are essentially dynamo-free, contain several isolated magnetic islands (as opposed to a stochastic field) and contain reduced high frequency turbulence. Auxiliary current drive and heating is now critical to RFP research. In MST, a programme to apply auxiliary systems to the RFP is underway and progress has accrued in several techniques, including lower hybrid and electron Bernstein wave injection, ac helicity injection current drive, pellet injection and neutral beam injection.


Physics of Plasmas | 2013

Fast ion confinement and stability in a neutral beam injected reversed field pinch

J. K. Anderson; A. F. Almagri; D.J. Den Hartog; S. Eilerman; Cary Forest; J. J. Koliner; V.V. Mirnov; L.A. Morton; M. D. Nornberg; E. Parke; J.A. Reusch; J.S. Sarff; J. Waksman; V. V. Belykh; V. I. Davydenko; A. A. Ivanov; S. V. Polosatkin; Yu. A. Tsidulko; L. Lin; D. Liu; G. Fiksel; Hajime Sakakita; Donald A. Spong; J.B. Titus

The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D2) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvenic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial...


Physics of Plasmas | 2012

First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pincha)

Jacob King; C.R. Sovinec; V.V. Mirnov

Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius (ρs) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from ∇B and poloidal curvature represented in the Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant ρs values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-f...


Physics of Plasmas | 2006

The Hall dynamo effect and nonlinear mode coupling during sawtooth magnetic reconnection

W. X. Ding; D. L. Brower; B.H. Deng; A. F. Almagri; D. Craig; G. Fiksel; V.V. Mirnov; Stewart C. Prager; J.S. Sarff; V. A. Svidzinski

During magnetic reconnection associated with sawtooth activity in a reversed field pinch, we observe a large fluctuation-induced Hall electromotive force, ⟨δJ×δB⟩∕nee, which is capable of modifying the equilibrium current. This Hall dynamo effect is determined in the hot plasma core by laser Faraday rotation which measures equilibrium and fluctuating magnetic field and current density. We find that the Hall dynamo is strongest when nonlinear mode coupling between three spatial Fourier modes of the resistive tearing instability is present. Mode coupling alters the phase relation between magnetic and current density fluctuations for individual Fourier modes leading to a finite Hall effect. Detailed measurements of the spatial and temporal dynamics for the dominant core resonant mode under various plasma configurations are described providing evidence regarding the origin of the Hall dynamo.


Physics of Plasmas | 2010

Measurements of impulsive reconnection driven by nonlinear Hall dynamics

T.D. Tharp; A. F. Almagri; M. C. Miller; V.V. Mirnov; Stewart C. Prager; J.S. Sarff; C.C. Kim

The magnetic fields associated with reconnection in the edge of the reversed field pinch configuration have been measured in the Madison Symmetric Torus. The measured magnetic field structure is compared with theoretical predictions computed in both toroidal and cylindrical geometries. The summation of multiple modes has been accomplished to reveal a complex but still coherent edge structure. Key terms of relevant Ohm’s law are accessible from magnetic field measurement and reveal the ordering [(1/ne)J×B⪢E>ηJ], which implies that two fluid effects are important in the physics governing this reconnection. Further, it is seen that the nonlinear three-wave coupling of the Hall term acts as a driving mechanism for this linearly stable mode.


Review of Scientific Instruments | 2014

Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)

V.V. Mirnov; D. L. Brower; D.J. Den Hartog; W. X. Ding; J. Duff; E. Parke

At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

Collaboration


Dive into the V.V. Mirnov's collaboration.

Top Co-Authors

Avatar

Stewart C. Prager

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

D. L. Brower

University of California

View shared research outputs
Top Co-Authors

Avatar

G. Fiksel

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

A. F. Almagri

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J.S. Sarff

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

W. X. Ding

University of California

View shared research outputs
Top Co-Authors

Avatar

D. Craig

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

D.J. Den Hartog

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

C. C. Hegna

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

C.R. Sovinec

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge