V. Versteirt
Institute of Tropical Medicine Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Versteirt.
Vector-borne and Zoonotic Diseases | 2012
Jolyon M. Medlock; Kayleigh M. Hansford; Francis Schaffner; V. Versteirt; Guy Hendrickx; Hervé Zeller; Wim Van Bortel
There has been growing interest in Europe in recent years in the establishment and spread of invasive mosquitoes, notably the incursion of Aedes albopictus through the international trade in used tires and lucky bamboo, with onward spread within Europe through ground transport. More recently, five other non-European aedine mosquito species have been found in Europe, and in some cases populations have established locally and are spreading. Concerns have been raised about the involvement of these mosquito species in transmission cycles of pathogens of public health importance, and these concerns were borne out following the outbreak of chikungunya fever in Italy in 2007, and subsequent autochthonous cases of dengue fever in France and Croatia in 2010. This article reviews current understanding of all exotic (five introduced invasive and one intercepted) aedine species in Europe, highlighting the known import pathways, biotic and abiotic constraints for establishment, control strategies, and public health significance, and encourages Europe-wide surveillance for invasive mosquitoes.
Bulletin of Entomological Research | 2015
Jolyon M. Medlock; Kayleigh M. Hansford; V. Versteirt; Benjamin Cull; Helge Kampen; Didier Fontenille; Guy Hendrickx; Hervé Zeller; W. Van Bortel; Francis Schaffner
Among the invasive mosquitoes registered all over the world, Aedes species are particularly frequent and important. As several of them are potential vectors of disease, they present significant health concerns for 21st century Europe. Five species have established in mainland Europe, with two (Aedes albopictus and Aedes japonicus) becoming widespread and two (Ae. albopictus and Aedes aegypti) implicated in disease transmission to humans in Europe. The routes of importation and spread are often enigmatic, the ability to adapt to local environments and climates are rapid, and the biting nuisance and vector potential are both an ecomonic and public health concern. Europeans are used to cases of dengue and chikungunya in travellers returning from the tropics, but the threat to health and tourism in mainland Europe is substantive. Coupled to that are the emerging issues in the European overseas territorities and this paper is the first to consider the impacts in the remoter outposts of Europe. If entomologists and public health authorities are to address the spread of these mosquitoes and mitigate their health risks they must first be prepared to share information to better understand their biology and ecology, and share data on their distribution and control successes. This paper focusses in greater detail on the entomological and ecological aspects of these mosquitoes to assist with the risk assessment process, bringing together a large amount of information gathered through the ECDC VBORNET project.
Journal of Medical Entomology | 2009
V. Versteirt; Francis Schaffner; Claire Garros; Wouter Dekoninck; Marc Coosemans; W. Van Bortel
ABSTRACT The establishment of the potential vector species Aedes (Finlaya) japonicus japonicus (Theobald) (Diptera: Culicidae) in southern Belgium is reported. The species was most likely introduced through the international trade in used tires. It was first collected in 2002 on the premises of a second-hand tire company and was sampled using different sampling methods in the two consecutive years (2003–2004). It was only in 2007 and 2008, during a national mosquito survey (MODIRISK), that its presence as adults and larvae at the above-mentioned site and at another tire company in the area was confirmed based on morphological and molecular identification. This discovery is the first record for Belgium of an exotic mosquito species that established successfully and raises the question on the need for monitoring and control. Considering the accompanying species found during the surveys, we also report here the first observation of Culex (Maillotia) hortensis hortensis (Ficalbi) in Belgium.
Bulletin of Entomological Research | 2013
V. Versteirt; Stephane Boyer; David Damiens; E. De Clercq; Wouter Dekoninck; Els Ducheyne; Patrick Grootaert; Claire Garros; Thierry Hance; Guy Hendrickx; M. Coosemans; W. Van Bortel
To advance our restricted knowledge on mosquito biodiversity and distribution in Belgium, a national inventory started in 2007 (MODIRISK) based on a random selection of 936 collection points in three main environmental types: urban, rural and natural areas. Additionally, 64 sites were selected because of the risk of importing a vector or pathogen in these sites. Each site was sampled once between May and October 2007 and once in 2008 using Mosquito Magnet Liberty Plus traps. Diversity in pre-defined habitat types was calculated using three indices. The association between species and environmental types was assessed using a correspondence analysis. Twenty-three mosquito species belonging to traditionally recognized genera were found, including 21 indigenous and two exotic species. Highest species diversity (Simpson 0.765) and species richness (20 species) was observed in natural areas, although urban sites scored also well (Simpson 0.476, 16 species). Four clusters could be distinguished based on the correspondence analysis. The first one is related to human modified landscapes (such as urban, rural and industrial sites). A second is composed of species not associated with a specific habitat type, including the now widely distributed Anopheles plumbeus. A third group includes species commonly found in restored natural or bird migration areas, and a fourth cluster is composed of forest species. Outcomes of this study demonstrate the effectiveness of the designed sampling scheme and support the choice of the trap type. Obtained results of this first country-wide inventory of the Culicidae in Belgium may serve as a basis for risk assessment of emerging mosquito-borne diseases.
Molecular Ecology Resources | 2015
V. Versteirt; Zoltán T. Nagy; Patricia Roelants; Leen Denis; Floris C. Breman; D. Damiens; Wouter Dekoninck; Thierry Backeljau; Marc Coosemans; W. Van Bortel
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well‐supported clusters. Intraspecific Kimura 2‐parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra‐ and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.
Journal of Medical Entomology | 2011
Wouter Dekoninck; F. Hendrickx; W. Van Bortel; V. Versteirt; M. Coosemans; David Damiens; Thierry Hance; E. De Clercq; G. Hendrickx; Francis Schaffner; P. Grootaert
ABSTRACT For the majority of native species, human-created habitats provide a hostile environment that prevents their colonization. However, if the conditions encountered in this novel environment are part of the fundamental niche of a particular species, these low competitive environments may allow strong population expansion of even rare and stenotopic species. If these species are potentially harmful to humans, such anthropogenic habitat alterations may impose strong risks for human health. Here, we report on a recent and severe outbreak of the viciously biting and day-active mosquito Anopheles plumbeus Stephens, 1828, that is caused by a habitat shift toward human-created habitats. Although historic data indicate that the species was previously reported to be rare in Belgium and confined to natural forest habitats, more recent data indicate a strong population expansion all over Belgium and severe nuisance at a local scale. We show that these outbreaks can be explained by a recent larval habitat shift of this species from tree-holes in forests to large manure collecting pits of abandoned and uncleaned pig stables. Further surveys of the colonization and detection of other potential larval breeding places of this mosquito in this artificial environment are of particular importance for human health because the species is known as a experimental vector of West Nile virus and a potential vector of human malaria.
PLOS ONE | 2014
David Damiens; Audrey Ayrinhac; Wim Van Bortel; V. Versteirt; Wouter Dekoninck; Thierry Hance
When accidentally introduced in a new location, a species does not necessarily readily become invasive, but it usually needs several years to adapt to its new environment. In 2009, a national mosquito survey (MODIRISK) reported the introduction and possible establishment of an invasive mosquito species, Aedes j. japonicus, in Belgium. First collected in 2002 in the village of Natoye from a second-hand tire company, then sampled in 2003 and 2004, the presence of adults and larvae was confirmed in 2007 and 2008. A repeated cross-sectional survey of Ae. j. japonicus was then conducted in 2009 in Natoye to study the phenology of the species on two different sites using three kinds of traps: Mosquito Magnet Liberty Plus traps, BG sentinel traps and CDC Gravid traps. An analysis of the blood meals was done on females to assess the epidemiological risks. Five species of mosquitos were caught using the different kind of traps: Culex pipiens, Cx torrentium, Anopheles claviger, Aedes geniculatus and Ae. j. japonicus, Cx pipiens being the most abundant. The CDC gravid traps gave the best results. Surprisingly Ae. j. japonicus was only found on one site although both sites seem similar and are only distant of 2.5 km. Its population peak was reached in July. Most of the engorged mosquitoes tested acquired blood meals from humans (60%). No avian blood meals were unambiguously identified. Larvae were also collected, mostly from tires but also from buckets and from one tree hole. Only one larva was found in a puddle at 100 m of the tire storage. A first local treatment of Ae. j. japonicus larvae population was done in May 2012 using Bacillus thuringiensis subsp. israelensis (Bti) and was followed by preventive actions and public information. A monitoring is also presently implemented.
Parasites & Vectors | 2016
Thomas G. T. Jaenson; Kairi Värv; Isabella Fröjdman; Anu Jääskeläinen; Kaj Rundgren; V. Versteirt; Agustín Estrada-Peña; Jolyon M. Medlock; Irina Golovljova
BackgroundThe tick species Ixodes ricinus and I. persulcatus are of exceptional medical importance in the western and eastern parts, respectively, of the Palaearctic region. In Russia and Finland the range of I. persulcatus has recently increased. In Finland the first records of I. persulcatus are from 2004. The apparent expansion of its range in Finland prompted us to investigate if I. persulcatus also occurs in Sweden.MethodsDog owners and hunters in the coastal areas of northern Sweden provided information about localities where ticks could be present. In May-August 2015 we used the cloth-dragging method in 36 localities potentially harbouring ticks in the Bothnian Bay area, province Norrbotten (NB) of northern Sweden. Further to the south in the provinces Västerbotten (VB) and Uppland (UP) eight localities were similarly investigated.ResultsIxodes persulcatus was detected in 9 of 36 field localities in the Bothnian Bay area. Nymphs, adult males and adult females (n = 46 ticks) of I. persulcatus were present mainly in Alnus incana - Sorbus aucuparia - Picea abies - Pinus sylvestris vegetation communities on islands in the Bothnian Bay. Some of these I. persulcatus populations seem to be the most northerly populations so far recorded of this species. Dog owners asserted that their dogs became tick-infested on these islands for the first time 7–8 years ago. Moose (Alces alces), hares (Lepus timidus), domestic dogs (Canis lupus familiaris) and ground-feeding birds are the most likely carriers dispersing I. persulcatus in this area. All ticks (n = 124) from the more southern provinces of VB and UP were identified as I. ricinus.ConclusionsThe geographical range of the taiga tick has recently expanded into northern Sweden. Increased information about prophylactic, anti-tick measures should be directed to people living in or visiting the coastal areas and islands of the Baltic Bay.
Journal of Vector Ecology | 2015
Slimane Boukraa; Wouter Dekoninck; V. Versteirt; Francis Schaffner; Marc Coosemans; Eric Haubruge; Frédéric Francis
ABSTRACT: Most information about the systematics and bioecology of Belgian mosquitoes dates back from before 1950, and only scattered information was produced during the last decades. In this paper we review and update the list of mosquito species recorded in Belgium, from first report (1908) to 2015. Six genera and 31 species were recorded so far, including 28 autochthonous species and three invasive alien species recently recorded in Belgium: Aedes albopictus (Skuse 1894), Ae. japonicus japonicus (Theobald 1901), and Ae. koreicus (Edwards 1917). The six genera are Anopheles (five species), Aedes (sixteen species), Coquillettidia (one species), Culex (four species), Culiseta (four species), and Orthopodomyia (one species).
Journal of Medical Entomology | 2013
Wouter Dekoninck; F. Hendrickx; V. Versteirt; M. Coosemans; E. De Clercq; Guy Hendrickx; T. Hance; P. Grootaert
ABSTRACT Mosquito (Diptera: Culicidae) distribution data from a recent inventory of native and invading mosquito species in Belgium were compared with historical data from the period 1900–1960 that were retrieved from a revision of the Belgian Culicidae collection at the Royal Belgian Institute of Natural Sciences. Both data sets were used to investigate trends in mosquito species richness in several regions in Belgium. The relative change in distribution area of mosquito species was particularly important for species that use waste waters and used tires as larval habitats and species that recently shifted their larval habitat to artificial larval habitats. More importantly, several of these species are known as vectors of arboviruses and Plasmodium sp. and the apparent habitat shift of some of them brought these species in proximity to humans. Similar studies comparing current mosquito richness with former distribution data retrieved from voucher specimens from collections is therefore encouraged because they can generate important information concerning health risk assessment at both regional and national scale.