Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V Wilson is active.

Publication


Featured researches published by V Wilson.


Pediatric Research | 2000

Effect of Maternal Nutrition on Brown Adipose Tissue and Its Prolactin Receptor Status in the Fetal Lamb

Helen Budge; Jayson Bispham; Jennifer Dandrea; Elizabeth Evans; Lindsay Heasman; P Ingleton; Claire Sullivan; V Wilson; Terence Stephenson; Michael E. Symonds

We investigated the influence of maternal nutritional enhancement during the second half of gestation on prolactin receptor (PRLR) abundance in fetal brown adipose tissue (BAT) and liver close to term (i.e. 141–144 d gestation). Ewes were provided with 100% (i.e. control;n = 8) or 150% (i.e. well-fed;n = 7) of their metabolic requirements from 80 to 144 d gestation. Crude plasma membranes were prepared from fetal BAT and hepatic tissue, and individual molecular weight isoforms for the long and short forms of the PRLR were detected by immunoblotting. Mitochondrial preparations were prepared from BAT to measure the amount of the BAT-specific mitochondrial uncoupling protein-1 and its thermogenic activity (i.e. guanosine 5′-diphosphate binding). Fetuses sampled from well-fed ewes were heavier (controls, 3927 ± 196 g; well-fed, 4783 ± 219 g;p = 0.01) but possessed less BAT per kilogram body weight (controls, 5.92 ± 0.43 g/kg; well-fed, 3.85 ± 0.19 g/kg;p = 0.001), which had a greater uncoupling protein-1 abundance (controls, 56 ± 5% of reference; well-fed, 78 ± 9% of reference;p < 0.01) and higher thermogenic activity (controls, 157 ± 41 pmol guanosine 5′-diphosphate per milligram mitochondrial protein; well-fed, 352 ± 36 pmol guanosine 5′-diphosphate per milligram mitochondrial protein;p < 0.01) than controls. Multiple isoforms of the long and short forms of the PRLR were detected in all tissues. BAT from well-fed fetuses had a higher abundance of the 15-kD isoform of the long form of the PRLR (controls, 1.6 ± 0.4 densitometric units; well-fed, 16.3 ± 2.0 densitometric units;p < 0.001). This isoform was not detected in hepatic tissue. Maternal nutrient intake had no effect on any other isoforms of the PRLR in BAT or liver. In conclusion, increasing the quantity of feed provided in late gestation acts to promote fetal weight and BAT maturation, the combination of which will enhance neonatal viability.


Reproduction | 2011

Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring.

Melanie A. Hyatt; David S. Gardner; Sylvain Sebert; V Wilson; N Davidson; Y Nigmatullina; Laureen Chan; Helen Budge; Michael E. Symonds

Maternal nutrition during the period of early organ development can modulate the offsprings ability to metabolise excess fat as young adults when exposed to an obesogenic environment. This study examined the hypothesis that exposing offspring to nutrient restriction coincident with early hepatogenesis would result in endocrine and metabolic adaptations that subsequently lead to increased ectopic lipid accumulation within the liver. Pregnant sheep were fed either 50 or 100% of total metabolisable energy requirements from 30 to 80 days gestation and 100% thereafter. At weaning, offspring were made obese, and at ∼1 year of age livers were sampled. Lipid infiltration and molecular indices of gluconeogenesis, lipid metabolism and mitochondrial function were measured. Although hepatic triglyceride accumulation was not affected by obesity per se, it was nearly doubled in obese offspring born to nutrient-restricted mothers. This adaptation was accompanied by elevated gene expression for peroxisome proliferator-activated receptor γ (PPARG) and its co-activator PGC1α, which may be indicative of changes in the rate of hepatic fatty acid oxidation. In contrast, maternal diet had no influence on the stimulatory effect of obesity on gene expression for a range of proteins involved in glucose metabolism and energy balance including glucokinase, glucocorticoid receptors and uncoupling protein 2. Similarly, although gene expressions for the insulin and IGF1 receptors were suppressed by obesity they were not influenced by the prenatal nutritional environment. In conclusion, excess hepatic lipid accumulation with juvenile obesity is promoted by suboptimal nutrition coincident with early development of the fetal liver.


Reproduction | 2007

Nutritional manipulation between early to mid-gestation: effects on uncoupling protein-2, glucocorticoid sensitivity, IGF-I receptor and cell proliferation but not apoptosis in the ovine placenta.

M. G. Gnanalingham; Paula J. Williams; V Wilson; J Bispham; Melanie A. Hyatt; A Pellicano; Helen Budge; T Stephenson; Michael E. Symonds

In sheep, modest maternal nutrient restriction (NR) over the period of rapid placental growth restricts placentome growth and results in offspring in which glucocorticoid action is enhanced. Therefore, this study investigated the placental effects of early to mid-gestational NR on glucocorticoid receptor (GR), 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), uncoupling protein-2 (UCP2), and IGF type-I receptor (IGF-IR) mRNA abundance together with cell proliferation and apoptosis as determined histologically, and the mitochondrial proteins voltage-dependent anion channel and cytochrome c that are involved in apoptosis. Placenta was sampled at 80 and 140 days gestation (dGA; term ~147 dGA). NR was imposed between 28 and 80 days gestation when control and nutrient-restricted groups consumed 150 or 60% respectively of their total metabolizable energy requirements. All mothers were then fed to requirements up to term. Total fetal placentome weights were decreased by NR at 80 dGA but were heavier at 140 dGA following 60 days of nutritional rehabilitation. GR and UCP2 mRNA abundance increased whilst 11betaHSD2 mRNA decreased with gestational age. NR persistently up-regulated GR and UCP2 mRNA abundance. 11betaHSD2 mRNA was reduced by NR at 80 dGA but increased near to term. IGF-IRmRNA abundance was only decreased at 80 dGA. Placental apoptosis and mitochondrial protein abundance were unaffected by NR, whereas cell proliferation was markedly reduced. In conclusion, placental UCP2 and local glucocorticoid action are affected by the gestational nutritional status and may result in the offspring showing enhanced glucocorticoid sensitivity, thereby predisposing them to disease in later life.


Reproduction | 2009

The differential effects of the timing of maternal nutrient restriction in the ovine placenta on glucocorticoid sensitivity, uncoupling protein 2, peroxisome proliferator-activated receptor-γ and cell proliferation

Michalis Yiallourides; Sylvain Sebert; V Wilson; Don Sharkey; Stewart M. Rhind; Michael E. Symonds; Helen Budge

Nutrient restriction (NR) during critical windows of pregnancy has differential effects on placento-fetal growth and development. Our study, therefore, investigated developmental and metabolic adaptations within the ovine placenta following NR at different critical windows during the first 110 days of gestation (term=147 days). Thus, the effects of NR on cell proliferation, glucocorticoid sensitivity, IGF1 and 2 receptor, peroxisome proliferator-activated receptor gamma (PPARG), and uncoupling protein (UCP)2 gene expression in the placenta were examined. Singleton bearing sheep (n=4-8 per group) were fed either 100% of their total metabolizable energy requirements throughout the study or 50% of this amount between 0-30, 31-65, 66-110, and 0-110 days gestation. A significant reduction in cell proliferation and increased gene expression for the glucocorticoid and IGF2 receptors, PPARG, and UCP2 were detected in placentae sampled from mothers who were nutrient restricted between days 66 and 110 of gestation, only, relative to controls. This window of gestation coincides with the maximum placental growth and the start of exponential growth of the fetus when there are substantially increased metabolic demands on the placenta compared with earlier in gestation. Consequently, increased glucocorticoid sensitivity and suppressed IGF2 action could contribute to a switch in the placenta from proliferation to differentiation, thereby improving its nutrient transfer capacity. Upregulation of PPARG and UCP2 would promote placental fatty acid metabolism thereby limiting glucose utilization. These compensatory placental responses may serve to maintain fetal growth but could result in adverse adaptations such as the early onset of the metabolic syndrome in later life.


JCI insight | 2016

Gene pathway development in human epicardial adipose tissue during early life

Shalini Ojha; Hernan P. Fainberg; V Wilson; Giuseppe Pelella; Marcos Castellanos; Sean T. May; Attilio A. Lotto; Harold S. Sacks; Michael E. Symonds; Helen Budge

Studies in rodents and newborn humans demonstrate the influence of brown adipose tissue (BAT) in temperature control and energy balance and a critical role in the regulation of body weight. Here, we obtained samples of epicardial adipose tissue (EAT) from neonates, infants, and children in order to evaluate changes in their transcriptional landscape by applying a systems biology approach. Surprisingly, these analyses revealed that the transition to infancy is a critical stage for changes in the morphology of EAT and is reflected in unique gene expression patterns of a substantial proportion of thermogenic gene transcripts (~10%). Our results also indicated that the pattern of gene expression represents a distinct developmental stage, even after the rebound in abundance of thermogenic genes in later childhood. Using weighted gene coexpression network analyses, we found precise anthropometric-specific correlations with changes in gene expression and the decline of thermogenic capacity within EAT. In addition, these results indicate a sequential order of transcriptional events affecting cellular pathways, which could potentially explain the variation in the amount, or activity, of BAT in adulthood. Together, these results provide a resource to elucidate gene regulatory mechanisms underlying the progressive development of BAT during early life.


Reproduction | 2009

Influence of birth weight on gene regulators of lipid metabolism and utilization in subcutaneous adipose tissue and skeletal muscle of neonatal pigs.

Paula J. Williams; N Marten; V Wilson; J. Litten-Brown; A.M. Corson; Lynne Clarke; Michael E. Symonds; Alison Mostyn

Epidemiological studies suggest that low-birth weight infants show poor neonatal growth and increased susceptibility to metabolic syndrome, in particular, obesity and diabetes. Adipose tissue development is regulated by many genes, including members of the peroxisome proliferator-activated receptor (PPAR) and the fatty acid-binding protein (FABP) families. The aim of this study was to determine the influence of birth weight on key adipose and skeletal muscle tissue regulating genes. Piglets from 11 litters were ranked according to birth weight and 3 from each litter assigned to small, normal, or large-birth weight groups. Tissue samples were collected on day 7 or 14. Plasma metabolite concentrations and the expression of PPARG2, PPARA, FABP3, and FABP4 genes were determined in subcutaneous adipose tissue and skeletal muscle. Adipocyte number and area were determined histologically. Expression of FABP3 and 4 was significantly reduced in small and large, compared with normal, piglets in adipose tissue on day 7 and in skeletal muscle on day 14. On day 7, PPARA and PPARG2 were significantly reduced in adipose tissue from small and large piglets. Adipose tissue from small piglets contained more adipocytes than normal or large piglets. Birth weight had no effect on adipose tissue and skeletal muscle lipid content. Low-birth weight is associated with tissue-specific and time-dependent effects on lipid-regulating genes as well as morphological changes in adipose tissue. It remains to be seen whether these developmental changes alter an individuals susceptibility to metabolic syndrome.


Reproduction, Fertility and Development | 2013

Suboptimal maternal nutrition during early fetal kidney development specifically promotes renal lipid accumulation following juvenile obesity in the offspring

Hernan P. Fainberg; Don Sharkey; Sylvain Sebert; V Wilson; Mark Pope; Helen Budge; Michael E. Symonds

Reduced maternal food intake between early-to-mid gestation results in tissue-specific adaptations in the offspring following juvenile-onset obesity that are indicative of insulin resistance. The aim of the present study was to establish the extent to which renal ectopic lipid accumulation, as opposed to other markers of renal stress, such as iron deposition and apoptosis, is enhanced in obese offspring born to mothers nutrient restricted (NR) throughout early fetal kidney development. Pregnant sheep were fed either 100% (control) or NR (i.e. fed 50% of their total metabolisable energy requirement from 30-80 days gestation and 100% at all other times). At weaning, offspring were made obese and, at approximately 1 year, kidneys were sampled. Triglyceride content, HIF-1α gene expression and the protein abundance of the outer-membrane transporter voltage-dependent anion-selective channel protein (VDAC)-I on the kidney cortex were increased in obese offspring born to NR mothers compared with those born to controls, which exhibited increased iron accumulation within the tubular epithelial cells and increased gene expression of the death receptor Fas. In conclusion, suboptimal maternal nutrition coincident with early fetal kidney development results in enhanced renal lipid deposition following juvenile obesity and could accelerate the onset of the adverse metabolic, rather than cardiovascular, symptoms accompanying the metabolic syndrome.


Reproduction | 2007

Different effects of maternal parity, cold exposure and nutrient restriction in late pregnancy on the abundance of mitochondrial proteins in the kidney, liver and lung of postnatal sheep.

D P Yakubu; Alison Mostyn; V Wilson; Sarah Pearce; M C Alves-Guerra; C Pecqueur; B Miroux; Helen Budge; T Stephenson; Michael E. Symonds

Adaptation to the extrauterine environment at birth relies upon the onset of postnatal function and increased metabolism in the lungs, liver and kidney, mediated partly by activation of mitochondrial proteins such as the voltage-dependent anion channel (VDAC), cytochrome c and, in the lung only, uncoupling protein (UCP)2. The magnitude of adaptation is dependent on the maternal metabolic and endocrine environment. We, therefore, examined the influence of maternal cold exposure (MCE) induced by winter shearing of pregnant sheep in conjunction with nutrient restriction (NR; 50% reduction in maternal food intake from 110 days gestation up to term). The effect of parity was also examined, as the offspring of nulliparous mothers are growth restricted compared with multiparous offspring. All sheep were twin bearing. One twin was sampled after birth and its sibling at 30 days. In the lung, both MCE and maternal nulliparity enhanced UCP2 abundance. However, whilst VDAC abundance was decreased in both the offspring of nulliparous mothers and by NR, it was transiently raised by MCE. Kidney VDAC abundance was reduced by MCE and nulliparity, adaptations only influenced by NR in multiparous mothers. Cytochrome c abundance was raised by MCE and by NR in multiparous controls and raised in offspring of nulliparous mothers. Liver VDAC and cytochrome c abundance were transiently reduced by MCE and persistently lower in offspring of nulliparous mothers. In conclusion, changes in the maternal metabolic environment have marked tissue-specific effects on mitochondrial protein abundance in the lungs, liver and kidney that may be important in enabling the newborn to effectively adapt to the extrauterine environment.


Endocrinology | 2003

Maternal Endocrine Adaptation throughout Pregnancy to Nutritional Manipulation: Consequences for Maternal Plasma Leptin and Cortisol and the Programming of Fetal Adipose Tissue Development

Jayson Bispham; G. S. Gopalakrishnan; Jennifer Dandrea; V Wilson; Helen Budge; D. H. Keisler; F. Broughton Pipkin; Terence Stephenson; Michael E. Symonds


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2005

Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition

David S. Gardner; K. Tingey; B. W. M. Van Bon; S. E. Ozanne; V Wilson; Jennifer Dandrea; D. H. Keisler; T Stephenson; Michael E. Symonds

Collaboration


Dive into the V Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Budge

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Mostyn

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Don Sharkey

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge