Václav Pižl
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Václav Pižl.
Ecological Engineering | 2001
Jan Frouz; Beate Keplin; Václav Pižl; Karel Tajovský; Josef Starý; Alena Lukešová; Alena Nováková; Vladimír Balík; Ladislav Háněl; Jan Materna; Christian Düker; Josef Chalupský; Josef Rusek; Thomas Heinkele
Abstract Density and community composition of a wide spectrum of soil organisms (fungi, algae, testate amoebae, nematodes, enchytraeids, lumbricids, oribatid mites, diplopods, terrestrial isopods, collembolans and dipteran larvae), direct counts of bacteria, rate of cellulose decomposition and microstructure of upper soil layers were studied in two chronosequences of plots reclaimed from open-cast coal mining near Cottbus (Germany) and near Sokolov (Czech Republic). German plots were characterized by acidic sandy soils and afforested with pine, while the Czech plots possessed alkaline clay soils and were afforested with alder. In both chronosequences, density and species richness in most of investigated groups of soil biota gradually increased with increasing succession age. Typical pioneer species were found in initial stands of both chronosequences. Nevertheless, the initial stands supported poorer assemblages of soil biota in the Cottbus area than did those in the Sokolov area. The Cottbus area was characterized by a moor type of humus and by gradual uniform increase of abundances and species numbers of most studied groups of soil biota. On the contrary, moder type of humus and a more variable pattern of soil biota development during the course of succession were found in the Sokolov area. Slower development of soil biota in initial stages of succession in Cottbus is caused by unfavourable physical and chemical conditions of heap substrates, and by lower input and poor quality of litter in pine plantations.
Global Change Biology | 2015
Maria A. Tsiafouli; Elisa Thébault; Stefanos P. Sgardelis; Peter C. de Ruiter; Wim H. van der Putten; Klaus Birkhofer; Lia Hemerik; Franciska T. de Vries; Richard D. Bardgett; Mark Brady; Lisa Bjørnlund; Helene Bracht Jørgensen; Søren Christensen; Tina D’Hertefeldt; Stefan Hotes; W. H. Gera Hol; Jan Frouz; Mira Liiri; Simon R. Mortimer; Heikki Setälä; Joseph Tzanopoulos; Karoline Uteseny; Václav Pižl; Josef Stary; Volkmar Wolters; Katarina Hedlund
Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.
Environmental Pollution | 1995
Václav Pižl; Guy Josens
Earthworms were studied at six sites along a gradient of urbanization and their relations with several soil abiotic factors were determined. Concentrations of heavy metals, calcium and magnesium in earthworms and in soils were measured by atomic absorption spectroscopy. Strong negative correlations were detected between earthworm density and soil concentrations of cadmium and magnesium. Earthworm biomass was negatively correlated with lead, copper and zinc, and positively correlated with the distance from the centre of the city. High concentrations of Cd and Zn (concentration factors 49 and 32) were accumulated by earthworms in contrast to those of Cu and Pb (2 and 1). Relations between worm and soil concentrations of heavy metals, Ca and Mg are discussed.
Pedobiologia | 2003
Václav Pižl; Alena Nováková
Microscopic fungi, associated with fresh and processed substrates and with the intestines of Eisenia andrei, were studied in three vermiculture systems differing in their productivity. To assess the possible effects of fungi on the rates of growth of E. andrei, laboratory-based feeding trials were carried out on substrates amended with selected fungal species. In total, 151 species and 7 forms of microscopic fungi were isolated during the study. Of those, 132 taxa were recorded from three vermiculture substrates and 123 taxa from worm intestines. In vermiculture substrates, Aspergillus fumigatus, A. flavus, Geotrichum candidum, Penicillium expansum and P. roquefortii were most frequently isolated by dilution plate method and Rhizopus stolonifer by soil washing technique. Fusarium ventricosum dominated among the cellulolytic fungi. A. fumigatus, Mucor circinelloides f. circinelloides and P. expansum were dominant in the intestines of earthworms. Processed vermiculture substrates regularly yielded higher numbers of culturable micromycetes (CFU) and the CFU values of fungi in earthworm intestines were close to or higher than those of processed substrates. Mycelial biomass was lower in fresh than in processed substrates in two vermiculture systems, but higher in the less effective third system. The results of earthworm feeding experiments showed that the amendment of vermiculture substrates resulted in an increase of growth rates; the earthworm growth rate was greatest in treatment with Aspergillus flavus.
Pesquisa Agropecuaria Brasileira | 2009
Josef Zeithaml; Václav Pižl; Petr Sklenicka
The objective of this work was to assess the effects of a forest-Þ eld ecotone on earthworm assemblages. Five sites (blocks) differing in the type of crop rotation used in the Þ eld were studied in Central Bohemia, Czech Republic. In each block, sampling was carried out in seven parallel rows perpendicular to a transect from a forest (oak or oak-pine) to the centre of a Þ eld, both in spring and autumn 2001-2003. Individual rows were located in the forest (5 m from the edge), in the forest edge, and in the Þ eld (at 5, 10, 25, 50 and 100 m distances from the forest edge). The density and biomass of earthworms were lowest in the forest, increased markedly in the forest edge, decreased again at 5 or 10 m distance from the forest edge and then continuously increased along the distance to the Þ eld boundary. The highest number of species was found in the forest edge and in the Þ eld boundary. Individual species differed in their distribution along the transect. Both density and biomass of earthworms were correlated with distance from forest edge, soil organic matter content, soil porosity, and water inÞ ltration rate.
PLOS ONE | 2013
Jiří Dvořák; Veronika Mančíková; Václav Pižl; Dana Elhottová; Marcela Šilerová; Radka Roubalová; František Škanta; Petra Procházková; Martin Bilej
Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.
PLOS ONE | 2013
Jan Frouz; Elisa Thébault; Václav Pižl; Sina Adl; Tomáš Cajthaml; Petr Baldrian; Ladislav Háněl; Josef Starý; Karel Tajovský; Jan Materna; Alena Nováková; Peter C. de Ruiter
Parameters characterizing the structure of the decomposer food web, biomass of the soil microflora (bacteria and fungi) and soil micro-, meso- and macrofauna were studied at 14 non-reclaimed 1– 41-year-old post-mining sites near the town of Sokolov (Czech Republic). These observations on the decomposer food webs were compared with knowledge of vegetation and soil microstructure development from previous studies. The amount of carbon entering the food web increased with succession age in a similar way as the total amount of C in food web biomass and the number of functional groups in the food web. Connectance did not show any significant changes with succession age, however. In early stages of the succession, the bacterial channel dominated the food web. Later on, in shrub-dominated stands, the fungal channel took over. Even later, in the forest stage, the bacterial channel prevailed again. The best predictor of fungal bacterial ratio is thickness of fermentation layer. We argue that these changes correspond with changes in topsoil microstructure driven by a combination of plant organic matter input and engineering effects of earthworms. In early stages, soil is alkaline, and a discontinuous litter layer on the soil surface promotes bacterial biomass growth, so the bacterial food web channel can dominate. Litter accumulation on the soil surface supports the development of the fungal channel. In older stages, earthworms arrive, mix litter into the mineral soil and form an organo-mineral topsoil, which is beneficial for bacteria and enhances the bacterial food web channel.
Pesquisa Agropecuaria Brasileira | 2009
Václav Pižl; Jiří Schlaghamerský; Jan Tříska
The effect of soil contamination by polycyclic aromatic hydrocarbons (PAH) and heavy metals on earthworms and enchytraeids was studied in urban parks, in Brno, Czech Republic. In spring and autumn 2007, annelids were collected and soil samples taken in lawns along transects, at three different distances (1, 5 and 30 m) from streets with heavy traffi c. In both seasons, two parks with two transects each were sampled. Earthworms were collected using the electrical octet method. Enchytraeids were extracted by the wet funnel method from soil cores. All collected annelids were counted and identifi ed. Basic chemical parameters and concentrations of 16 PAH, Cd, Cu, Pb, and Zn were analysed from soil from each sampling point. PAH concentrations were rather low, decreasing with the distance from the street in spring but not in autumn. Heavy metal concentrations did not decrease signifi cantly with increasing distance. Annelid densities did not signifi cantly differ between distances, although there was a trend of increase in the number of earthworms with increasing distance. There were no signifi cant correlations between soil content of PAH or heavy metals and earthworm or enchytraeid densities. Earthworm density and biomass were negatively correlated with soil pH; and enchytraeid density was positively correlated with soil phosphorus.
Journal of Invertebrate Pathology | 2013
Petra Procházková; Vladimír Šustr; Jiří Dvořák; Radka Roubalová; František Škanta; Václav Pižl; Martin Bilej
Earthworms Eisenia andrei, similarly to other invertebrates, rely on innate defense mechanisms based on the capability to recognize and respond to nonself. Here, we show a correlation between the expression of CCF, a crucial pattern-recognition receptor, and lysozyme, with enzyme activities in the gut of E. andrei earthworms following a microbial challenge. These data suggest that enzyme activities important for the release and recognition of molecular patterns by pattern-recognition molecules, as well as enzymes involved in effector pathways, are modulated during the microbial challenge. In particular, protease, laminarinase, and glucosaminidase activities were increased in parallel to up-regulated CCF and lysozyme expression.
Biologia | 2010
Vladimír Šustr; Václav Pižl
Ontogenetic changes and temperature dependency of respiration rate were studied in Dendrobaena mrazeki, an earthworm species inhabiting relatively warm and dry habitats in Central Europe. D. mrazeki showed respiration rate lower than in other earthworm species, < 70 μl O2 g−1 h−1, within the temperature range of 5–35°C. The difference of respiration rate between juveniles and adults was insignificant at 20°C. The response of oxygen consumption to sudden temperature changes was compared with the temperature dependence of respiratory activity in animals pre-acclimated to temperature of measurement. No significant impact of acclimation on the temperature response of oxygen consumption was found. The body mass-adjusted respiration rate increased slowly with increasing temperature from 5 to 25°C (Q10 from 1.2 to 1.7) independently on acclimation history of earthworms. Oxygen consumption decreased above 25°C up to upper lethal limit (about 35°C). Temperature dependence of metabolic rate is smaller than in other earthworm species. The relationships between low metabolic sensitivity to temperature, slow locomotion and reactivity to touching as observed in this species are discussed.