Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim Backman is active.

Publication


Featured researches published by Vadim Backman.


Applied Optics | 1999

Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo.

George Zonios; Lev T. Perelman; Vadim Backman; Maryann Fitzmaurice; Jacques Van Dam; Michael S. Feld

Diffuse reflectance spectra were collected from adenomatous colon polyps (cancer precursors) and normal colonic mucosa of patients undergoing colonoscopy. We analyzed the data by using an analytical light diffusion model, which was tested and validated on a physical tissue model composed of polystyrene beads and hemoglobin. Four parameters were obtained: hemoglobin concentration, hemoglobin oxygen saturation, effective scatterer density, and effective scatterer size. Normal and adenomatous tissue sites exhibited differences in hemoglobin concentration and, on average, in effective scatterer size, which were in general agreement with other studies that employ standard methods. These results suggest that diffuse reflectance can be used to obtain tissue information about tissue structure and composition in vivo.


Nature | 2000

Detection of preinvasive cancer cells

Vadim Backman; M. Wallace; Lev T. Perelman; J. T. Arendt; Rajan Gurjar; Markus G. Müller; Qingguo Zhang; George Zonios; E. Kline; T. McGillican; Stanley M. Shapshay; T. Valdez; Kamran Badizadegan; Jason M. Crawford; Maryann Fitzmaurice; Sadru Kabani; H. S. Levin; M. Seiler; Ramachandra R. Dasari; Irving Itzkan; J. Van Dam; Michael S. Feld

More than 85% of all cancers originate in the epithelium that lines the internal surfaces of organs throughout the body. Although these are readily treatable provided they are diagnosed in one of the preinvasive stages, early lesions are often almost impossible to detect. Here we present a new optical-probe technique based on light-scattering spectroscopy that is able to detect precancerous and early cancerous changes in cell-rich epithelia.


Optics Express | 2004

Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique

Zhigang Chen; Allen Taflove; Vadim Backman

We report what we believe to be the first evidence of localized nanoscale photonic jets generated at the shadow-side surfaces of micronscale, circular dielectric cylinders illuminated by a plane wave. These photonic nanojets have waists smaller than the diffraction limit and propagate over several optical wavelengths without significant diffraction. We have found that such nanojets can enhance the backscattering of visible light by nanometer-scale dielectric particles located within the nanojets by several orders of magnitude. Not involving evanescent fields and not requiring mechanical scanning, photonic nanojets may provide a new means to detect and image nanoparticles of size well below the diffraction limit. This could yield a potential novel ultramicroscopy technique using visible light for detecting proteins, viral particles, and even single molecules; and monitoring molecular synthesis and aggregation processes of importance in many areas of biology, chemistry, material sciences, and tissue engineering.


Nature Medicine | 2001

Imaging human epithelial properties with polarized light-scattering spectroscopy

Rajan Gurjar; Vadim Backman; Lev T. Perelman; Irene Georgakoudi; Kamran Badizadegan; Irving Itzkan; Ramachandra R. Dasari; Michael S. Feld

Biomedical imaging with light-scattering spectroscopy (LSS) is a novel optical technology developed to probe the structure of living epithelial cells in situ without need for tissue removal. LSS makes it possible to distinguish between single backscattering from epithelial-cell nuclei and multiply scattered light. The spectrum of the single backscattering component is further analyzed to provide quantitative information about the epithelial-cell nuclei such as nuclear size, degree of pleomorphism, degree of hyperchromasia and amount of chromatin. LSS imaging allows mapping these histological properties over wide areas of epithelial lining. Because nuclear enlargement, pleomorphism and hyperchromasia are principal features of nuclear atypia associated with precancerous and cancerous changes in virtually all epithelia, LSS imaging can be used to detect precancerous lesions in optically accessible organs.


Cancer | 2003

Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma

Markus G. Müller; Tulio A. Valdez; Irene Georgakoudi; Vadim Backman; Cesar Fuentes; Sadru Kabani; Nora Laver; Zimmern Wang; Charles W. Boone; Ramachandra R. Dasari; Stanley M. Shapshay; Michael S. Feld

Understanding the development and progression of head and neck squamous cell carcinoma is key in the quest for the early diagnosis and prevention of this type of malignancy. The current study correlated early biochemical and histologic changes in oral tissue with spectral features in fluorescence, reflectance, and light scattering spectra acquired in vivo to diagnose early stages of oral malignancies.


Optics Express | 2005

Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

Xu Li; Zhigang Chen; Allen Taflove; Vadim Backman

We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet - a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.


Biophysical Journal | 2002

Cellular organization and substructure measured using angle-resolved low-coherence interferometry.

Adam Wax; Changhuei Yang; Vadim Backman; Kamran Badizadegan; Charles W. Boone; Ramachandra R. Dasari; Michael S. Feld

We measure the organization and substructure of HT29 epithelial cells in a monolayer using angle-resolved low-coherence interferometry. This new technique probes cellular structure by measuring scattered light, as in flow cytometry, but offers an advantage in that the structure can be examined in situ, avoiding the need to disrupt the cell monolayer. We determine the size distribution of the cell nuclei by fitting measured light-scattering spectra to the predictions of Mie theory. In addition, we obtain information about the cellular organization and substructure by examining the spatial correlations within the monolayer. A remarkable finding is that the spatial correlations over small length scales take the form of an inverse power law, indicating the fractal nature of the packing of the subcellular structures. We also identify spatial correlations on a scale large compared with the size of a cell, indicating an overlying order within the monolayer.


IEEE Journal of Selected Topics in Quantum Electronics | 2003

Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer

Young L. Kim; Yang Liu; Ramesh K. Wali; Hemant K. Roy; Michael J. Goldberg; Alexey Kromin; Kun Chen; Vadim Backman

We present a novel instrument to measure the spectral, angular, azimuthal, and polarization dependence of light backscattered by living biological tissues, thus providing the most comprehensive description of the light scattering to obtain unique quantitative information about the microarchitecture of living cells and tissues. We show the potential of this technique to characterize and diagnose early premalignant changes in the epithelia. In studies with a rodent model of colon carcinogenesis, we show that several parameters obtained using this technique, such as the number density of red blood cells in the capillary network immediately underlying the epithelium, the fractal dimension of the tissue, and the average roundness of subcellular structures, are significant for detection of precancerous changes at a very early stage of the carcinogenic process, at which no other histological or molecular markers have been identified.


IEEE Journal of Selected Topics in Quantum Electronics | 2001

Measuring cellular structure at submicrometer scale with light scattering spectroscopy

Vadim Backman; Venkatesh Gopal; Maxim Kalashnikov; Kamran Badizadegan; Rajan Gurjar; Adam Wax; Irene Georgakoudi; Markus G. Mueller; Charles W. Boone; Ramachandra R. Dasari; Michael S. Feld

We present a novel instrument for imaging the angular distributions of light backscattered by biological cells and tissues. The intensities in different regions of the image are due to scatterers of different sizes. We exploit this to study scattering from particles smaller than the wavelength of light used, even when they are mixed with larger particles. We show that the scattering from subcellular structure in both normal and cancerous human cells is best fitted to inverse power-law distributions for the sizes of the scattering objects, and propose that the distribution of scattering objects may be different in normal versus cancerous cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells

Hariharan Subramanian; Prabhakar Pradhan; Yang Liu; Ilker R. Capoglu; Xu Li; Jeremy D. Rogers; Alexander Heifetz; Dhananjay Kunte; Hemant K. Roy; Allen Taflove; Vadim Backman

Recently, there has been a major thrust to understand biological processes at the nanoscale. Optical microscopy has been exceedingly useful in imaging cell microarchitecture. Characterization of cell organization at the nanoscale, however, has been stymied by the lack of practical means of cell analysis at these small scales. To address this need, we developed a microscopic spectroscopy technique, single-cell partial-wave spectroscopy (PWS), which provides insights into the statistical properties of the nanoscale architecture of biological cells beyond what conventional microscopy reveals. Coupled with the mesoscopic light transport theory, PWS quantifies the disorder strength of intracellular architecture. As an illustration of the potential of the technique, in the experiments with cell lines and an animal model of colon carcinogenesis we show that increase in the degree of disorder in cell nanoarchitecture parallels genetic events in the early stages of carcinogenesis in otherwise microscopically/histologically normal-appearing cells. These data indicate that this advance in single-cell optics represented by PWS may have significant biomedical applications.

Collaboration


Dive into the Vadim Backman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hariharan Subramanian

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Liu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramesh K. Wali

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge