Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim Bernard-Gauthier is active.

Publication


Featured researches published by Vadim Bernard-Gauthier.


Bioconjugate Chemistry | 2016

From Unorthodox to Established: The Current Status of 18F-Trifluoroborate- and 18F-SiFA-Based Radiopharmaceuticals in PET Nuclear Imaging

Vadim Bernard-Gauthier; Justin J. Bailey; Zhibo Liu; Björn Wängler; Carmen Wängler; Klaus Jurkschat; David M. Perrin; Ralf Schirrmacher

Unorthodox (18)F-labeling strategies not employing the formation of a carbon-(18)F bond are seldom found in radiochemistry. Historically, the formation of a boron- or silicon-(18)F bond has been introduced very early on into the repertoire of labeling chemistries, but is without translation into any clinical radiotracer besides inorganic B[(18)F]F4(-) for brain tumor diagnosis. For many decades these labeling methodologies were forgotten and have just recently been revived by a handful of researchers thinking outside the box. When breaking with established paradigms such as the inability to obtain labeled compounds of high specific activity via isotopic exchange or performing radiofluorination in aqueous media, the research community often reacts skeptically. In 2005 and 2006, two novel labeling methodologies were introduced into radiochemistry for positron emission tomography (PET) tracer development: RBF3(-) labeling reported by Perrin et al. and the SiFA methodology by Schirrmacher, Jurkschat, and Waengler et al. which is based on isotopic exchange (IE). Both labeling methodologies have been complemented by other noncanonical strategies to introduce (18)F into biomolecules of diagnostic importance, thus profoundly enriching the landscape of (18)F radiolabeling. B- and Si-based labeling strategies finally revealed that IE is a viable alternative to established and traditional radiochemistry with the advantage of simplifying both the labeling effort as well as the necessary purification of the radiotracer. Hence IE will be the focus of this contribution over other noncanonical labeling methods. Peptides for tumor imaging especially lend themselves favorably toward one-step labeling via IE, but small molecules have been described as well, taking advantage of these new approaches, and have been used successfully for brain imaging. This Review gives an account of both radiochemistries centered on boron and silicon, describing the very beginnings of their basic research, the path that led to optimization of their chemistries, and the first encouraging preclinical results paving the way to their clinical use. This side by side approach will give the reader the opportunity to follow the development of a new basic discovery into a clinically applicable radiotracer including all the hurdles that have had to be overcome.


The Journal of Nuclear Medicine | 2015

In Vivo Evaluation of 18F-SiFAlin–Modified TATE: A Potential Challenge for 68Ga-DOTATATE, the Clinical Gold Standard for Somatostatin Receptor Imaging with PET

Sabrina Niedermoser; Joshua Chin; Carmen Wängler; Alexey Kostikov; Vadim Bernard-Gauthier; Nils Vogler; Jean-Paul Soucy; Alexander J.B. McEwan; Ralf Schirrmacher; Björn Wängler

Radiolabeled peptides for tumor imaging with PET that can be produced with kits are currently in the spotlight of radiopharmacy and nuclear medicine. The diagnosis of neuroendocrine tumors in particular has been a prime example for the usefulness of peptides labeled with a variety of different radionuclides. Among those, 68Ga and 18F stand out because of the ease of radionuclide introduction (e.g., 68Ga isotope) or optimal nuclide properties for PET imaging (slightly favoring the 18F isotope). The in vivo properties of good manufacturing practice–compliant, newly developed kitlike-producible 18F-SiFA– and 18F-SiFAlin– (SiFA = silicon-fluoride acceptor) modified TATE derivatives were compared with the current clinical gold standard 68Ga-DOTATATE for high-quality imaging of somatostatin receptor–bearing tumors. Methods: SiFA- and SiFAlin-derivatized somatostatin analogs were synthesized and radiolabeled using cartridge-based dried 18F and purified via a C18 cartridge (radiochemical yield 49.8% ± 5.9% within 20–25 min) without high-performance liquid chromatography purification. Tracer lipophilicity and stability in human serum were tested in vitro. Competitive receptor binding affinity studies were performed using AR42J cells. The most promising tracers were evaluated in vivo in an AR42J xenograft mouse model by ex vivo biodistribution and in vivo PET/CT imaging studies for evaluation of their pharmacokinetic profiles, and the results were compared with those of the current clinical gold standard 68Ga-DOTATATE. Results: Synthetically easily accessible 18F-labeled silicon-fluoride acceptor–modified somatostatin analogs were developed. They exhibited high binding affinities to somatostatin receptor–positive tumor cells (1.88–14.82 nM). The most potent compound demonstrated comparable pharmacokinetics and an even slightly higher absolute tumor accumulation level in ex vivo biodistribution studies as well as higher tumor standardized uptake values in PET/CT imaging than 68Ga-DOTATATE in vivo. The radioactivity uptake in nontumor tissue was higher than for 68Ga-DOTATATE. Conclusion: The introduction of the novel SiFA building block SiFAlin and of hydrophilic auxiliaries enables a favorable in vivo biodistribution profile of the modified TATE peptides, resulting in high tumor-to-background ratios although lower than those observed with 68Ga-DOTATATE. As further advantage, the SiFA methodology enables a kitlike labeling procedure for 18F-labeled peptides advantageous for routine clinical application.


ACS Chemical Neuroscience | 2015

Syntheses and Evaluation of Carbon-11- and Fluorine-18-Radiolabeled pan-Tropomyosin Receptor Kinase (Trk) Inhibitors: Exploration of the 4-Aza-2-oxindole Scaffold as Trk PET Imaging Agents

Vadim Bernard-Gauthier; Arturo Aliaga; Antonio Aliaga; Mehdi Boudjemeline; Robert Hopewell; Alexey Kostikov; Pedro Rosa-Neto; Alexander Thiel; Ralf Schirrmacher

Tropomyosin receptor kinases (TrkA/B/C) are critically involved in the development of the nervous system, in neurological disorders as well as in multiple neoplasms of both neural and non-neural origins. The development of Trk radiopharmaceuticals would offer unique opportunities toward a more complete understanding of this emerging therapeutic target. To that end, we first developed [(11)C]GW441756 ([(11)C]9), a high affinity photoisomerizable pan-Trk inhibitor, as a lead radiotracer for our positron emission tomography (PET) program. Efficient carbon-11 radiolabeling afforded [(11)C]9 in high radiochemical yields (isolated RCY, 25.9% ± 5.7%). In vitro autoradiographic studies in rat brain and TrkB-expressing human neuroblastoma cryosections confirmed that [(11)C]9 specifically binds to Trk receptors in vitro. MicroPET studies revealed that binding of [(11)C]9 in the rodent brain was mostly nonspecific despite initial high brain uptake (SUVmax = 2.0). Modeling studies of the 4-aza-2-oxindole scaffold led to the successful identification of a small series of high affinity fluorinated and methoxy derivatized pan-Trk inhibitors based on our lead compound 9. Out of this series, the fluorinated compound 10 was selected for initial evaluation and radiolabeled with fluorine-18 (isolated RCY, 2.5% ± 0.6%). Compound [(18)F]10 demonstrated excellent Trk selectivity in a panel of cancer relevant kinase targets and a promising in vitro profile in tumors and brain sections but high oxidative metabolic susceptibility leading to nonspecific brain distribution in vivo. The information gained in this study will guide further exploration of the 4-aza-2-oxindole scaffold as a lead for Trk PET ligand development.


BioMed Research International | 2014

18F-Labeled Silicon-Based Fluoride Acceptors: Potential Opportunities for Novel Positron Emitting Radiopharmaceuticals

Vadim Bernard-Gauthier; Carmen Wängler; Esther Schirrmacher; Alexey Kostikov; Klaus Jurkschat; Bjoern Wängler; Ralf Schirrmacher

Background. Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET). These “nonclassical” labeling methodologies based on silicon-, boron-, and aluminium-18F chemistry deviate from commonplace bonding of an [18F]fluorine atom (18F) to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE) approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA) via simple IE. Methodology. The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. Scope of Review. A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. Conclusions. The literature over the last years (from 2006 to 2014) shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on 18F− leaving group substitutions have the potential to become a valuable addition to radiochemistry.


Expert Opinion on Therapeutic Patents | 2017

Tropomyosin receptor kinase inhibitors: an updated patent review for 2010-2016 – Part II

Justin J. Bailey; Ralf Schirrmacher; Kristen Farrell; Vadim Bernard-Gauthier

ABSTRACT Introduction: TrkA/B/C receptor activation supports growth, survival, and differentiation of discrete neuronal populations during development, adult life, and ageing but also plays numerous roles in human disease onset and progression. Trk-specific inhibitors have therapeutic applications in cancer and pain and thus constitute a growing area of interest in oncology and neurology. There has been substantial growth in the number of structural classes of Trk inhibitors and the number of industrial entrants to the Trk inhibitor field over the past six years. Areas covered: In Part II of this two-part review, the discussion of recent patent literature covering Trk family inhibitors is continued from Part I and clinical research with Trk inhibitors is considered. Expert opinion: Trk has been molecularly targeted for over a decade resulting in the progressive evolution of structurally diversified Trk inhibitors arising from scaffold hopping and HTS efforts. Correspondingly, there have been a growing number of clinical investigations utilizing Trk inhibitors in recent years, with a particular focus on the treatment of NTRK-fusion positive cancers and chronic pain. The observed potential of Trk inhibitors to cause adverse CNS side effects however suggests the need for a more rigorous consideration of BBB permeation capabilities during drug development.


Molecules | 2015

Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging

Vadim Bernard-Gauthier; Justin J. Bailey; Sheldon Berke; Ralf Schirrmacher

Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET) imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI) isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.


MedChemComm | 2015

Development of subnanomolar radiofluorinated (2-pyrrolidin-1-yl)imidazo[1,2-b]pyridazine pan-Trk inhibitors as candidate PET imaging probes

Vadim Bernard-Gauthier; Justin J. Bailey; Arturo Aliaga; Alexey Kostikov; Pedro Rosa-Neto; Melinda Wuest; Garrett M. Brodeur; Barry J. Bedell; Frank Wuest; Ralf Schirrmacher

Dysregulation of tropomyosin receptor kinases (TrkA/B/C) expression and signalling is recognized as a hallmark of numerous neurodegenerative diseases including Parkinsons, Huntingtons and Alzheimers disease. TrkA/B/C is known to drive tumorogensis and metastatic potential in a wide range of neurogenic and non-neurogenic human cancers. The development of suitable positron emission tomography (PET) radioligands would allow an in vivo exploration of this versatile potential therapeutic target. Herein, the rational remodeling of the amide moiety of a 6-(2-(3-fluorophenyl)pyrrolidin-1-yl)imidazo[1,2-b]pyridazine-3-amide lead structure to accommodate efficient fluorine-18 labeling led to the identification of a series of fluorinated Trk inhibitors with picomolar IC50. The ensuing representative radiolabeled inhibitors [18F]16 ([18F]-(±)-IPMICF6) and [18F]27 ([18F]-(±)-IPMICF10) constitute novel lead radioligands with about 2- to 3- orders of magnitude increased TrkB/C potencies compared to previous lead tracers and display favorable selectivity profiles and physicochemical parameters for translation into in vivo PET imaging agents.


Future Medicinal Chemistry | 2013

Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging?

Ralf Schirrmacher; Vadim Bernard-Gauthier; Andrew J. Reader; Jean-Paul Soucy; Esther Schirrmacher; Björn Wängler; Carmen Wängler

The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood-brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood-brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?


Drug Discovery Today: Technologies | 2017

Discovery of PET radiopharmaceuticals at the academia-industry interface

Vadim Bernard-Gauthier; Thomas Lee Collier; Steven H. Liang; Neil Vasdev

Project-specific collaborations between academia and pharmaceutical partners are a growing phenomenon within molecular imaging and in particular in the positron emission tomography (PET) radiopharmaceutical community. This cultural shift can be attributed in part to decreased public funding in academia in conjunction with the increased reliance on outsourcing of chemistry, radiochemistry, pharmacology and molecular imaging studies by the pharmaceutical industry. This account highlights some of our personal experiences working with industrial partners to develop new PET radiochemistry methodologies for drug discovery and neuro-PET research studies. These symbiotic academic-industrial partnerships have not only led to novel radiotracers for new targets but also to the application of new carbon-11 and fluorine-18 labeling methodologies and technologies to label previously unprecedented compounds for in vivo evaluations.


The Journal of Nuclear Medicine | 2017

Recent Advances in 18F Radiochemistry: A Focus on B-18F, Si-18F, Al-18F, and C-18F Radiofluorination via Spirocyclic Iodonium Ylides

Vadim Bernard-Gauthier; Mathieu L. Lepage; Bjoern Waengler; Justin J. Bailey; Steven H. Liang; David M. Perrin; Neil Vasdev; Ralf Schirrmacher

Straightforward radiosynthesis protocols for 18F-labeled radiopharmaceuticals are an indispensable but often overlooked prerequisite to successfully perform molecular imaging studies in vivo by PET. In recent years, thanks to the expansion of the 18F chemical toolbox, structurally diverse and novel clinically relevant radiopharmaceuticals have been synthesized with both high efficiency and ready implementation. This article provides an overview of recent 18F-labeling methodologies, specifically for B-18F, Si-18F, Al-18F, and iodine (III)-mediated radiofluorination via the spirocyclic iodonium ylide technology.

Collaboration


Dive into the Vadim Bernard-Gauthier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey Kostikov

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Jurkschat

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge