Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim V. Demidov is active.

Publication


Featured researches published by Vadim V. Demidov.


RNA | 2008

Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms

Feng Ding; Shantanu Sharma; Poornima Chalasani; Vadim V. Demidov; Natalia E. Broude; Nikolay V. Dokholyan

RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 A deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNA(Phe), pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses.


Expert Review of Molecular Diagnostics | 2002

ROLLING-CIRCLE AMPLIFICATION IN DNA DIAGNOSTICS: THE POWER OF SIMPLICITY

Vadim V. Demidov

Due to its robustness and simplicity, the rolling replication of circular DNA probes holds a distinct position in DNA diagnostics among other isothermal methods of target, probe or signal amplification. Major rolling-circle amplification approaches to DNA detection via posthybridization probe/signal turn-by-turn enhancement are briefly overviewed here with an emphasis on the new concepts and latest progress in the field, including the single-molecule and single-mutation detection assays as exemplary applications. Underlying mechanisms, current controversies and principal advantages of rolling-circle amplification are also considered. Possible future directions for the further advancement of this diagnostic methodology are outlined.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids

Vadim V. Demidov; Ekaterina Protozanova; Konstantin I. Izvolsky; Christopher Price; Peter E. Nielsen; Maxim D. Frank-Kamenetskii

If adenines and thymines in two mutually complementary mixed-base peptide nucleic acid (PNA) oligomers are substituted with diaminopurines and thiouracils, respectively, so-called pseudocomplementary PNAs (pcPNAs) are created. Pairs of pcPNAs have recently demonstrated an ability to highly selectively target essentially any designated site on double-stranded DNA (dsDNA) by forming very stable PNA–DNA strand-displacement complexes via double duplex invasion (helix invasion). These properties of pcPNAs make them unique and very promising ligands capable of denying the access of DNA-binding proteins to dsDNA. To elucidate the sequence-unrestricted mechanism of sequence-specific dsDNA recognition by pcPNAs, we have studied the kinetics of formation of corresponding PNA–DNA complexes at various temperatures by the gel-shift assay. In parallel, the conditions for possible self-hybridization of pcPNA oligomers have been assayed by mixing curve (Job plot) and thermal melting experiments. The data indicate that, at physiological temperatures (≈37°C), the equilibrium is shifted toward the pairing of corresponding pcPNAs with each other. This finding explains a linear concentration dependence, within the submicromolar range, of the pcPNA invasion rate into dsDNA at 37°C. At elevated temperatures (>50°C), the rather unstable pcPNA duplexes dissociate, yielding the expected quadratic dependence for the rate of pcPNA invasion on the PNA concentration. The polycationic character of pcPNA pairs, carrying the duplicated number of protonated terminal PNA residues commonly used to increase the PNA solubility and binding affinity, also explains the self-inhibition of pcPNA invasion observed at higher PNA concentrations. Melting of pcPNA duplexes occurs with the integral transition enthalpies ranged from −235 to −280 kJ⋅mol−1, contributing to an anomalously high activation energy of ≈150 kJ⋅mol−1 found for the helix invasion of pcPNAs carrying four different nucleobases. A simplified kinetic model for pcPNAs helix invasion is proposed that interprets all unusual features of pcPNAs binding to dsDNA. Our findings have important implications for rational use of pcPNAs.


Antisense & Nucleic Acid Drug Development | 2001

PNA beacons for duplex DNA.

Heiko Kuhn; Vadim V. Demidov; Brian D. Gildea; Mark J. Fiandaca; James C. Coull; Maxim D. Frank-Kamenetskii

We report here on the hybridization of peptide nucleic acid (PNA)-based molecular beacons (MB) directly to duplex DNA sites locally exposed by PNA openers. Two stemless PNA beacons were tested, both featuring the same recognition sequence and fluorophore-quencher pair (Fluorescein and DABCYL, respectively) but differing in arrangement of these groups and net electrostatic charge. It was found that one PNA beacon rapidly hybridized, with the aid of openers, to its complementary target within duplex DNA at ambient conditions via formation of a PD-like loop. In contrast, the other PNA beacon bound more slowly to preopened duplex DNA target and only at elevated temperatures, although it readily hybridized to single-stranded (ss) DNA target. Besides a higher selectivity of hybridization provided by site-specific PNA openers, we expect this approach to be very useful in those MB applications when denaturation of the duplex DNA analytes is unfavorable or undesirable. Furthermore, we show that PNA beacons are advantageous over DNA beacons for analyzing unpurified/nondeproteinized DNA samples. This feature of PNA beacons and our innovative hybridization strategy may find applications in emerging fluorescent DNA diagnostics.


Trends in Biotechnology | 2003

PNA and LNA throw light on DNA

Vadim V. Demidov

In some aspects, homogeneous (all-in-solution) nucleic acid hybridization assays are superior to the traditionally used heterogeneous (solution-to-surface) alternatives. Profluorescent probes, which reveal fluorescence enhancement or fluorescence polarization upon their binding to DNA and RNA targets, are a paradigm for the real-time sequence-specific homogeneous detection of nucleic acids. A variety of such DNA or RNA-derived probes of different constructs has already been developed with numerous applications. However, the recent additions to the field - locked nucleic acids (LNAs) and peptide nucleic acids (PNAs) - significantly increase the potential of profluorescent probes and provide a robust impulse for their new uses.


Angewandte Chemie | 1999

Topological Links between Duplex DNA and a Circular DNA Single Strand

Heiko Kuhn; Vadim V. Demidov; Maxim D. Frank-Kamenetskii

DNA nanostructures of building blocks topologically linked at a precise position can be assembled from DNA duplexes and circularized oligonucleotides with the aid of peptide nucleic acids (PNAs). Shown schematically is a linked catenane yielding an earring topological DNA label.


Nucleic Acids Research | 2005

End invasion of peptide nucleic acids (PNAs) with mixed-base composition into linear DNA duplexes

Irina V. Smolina; Vadim V. Demidov; Viatcheslav A. Soldatenkov; Sergey Chasovskikh; Maxim D. Frank-Kamenetskii

Peptide nucleic acid (PNA) is a synthetic DNA mimic with valuable properties and a rapidly growing scope of applications. With the exception of recently introduced pseudocomplementary PNAs, binding of common PNA oligomers to target sites located inside linear double-stranded DNAs (dsDNAs) is essentially restricted to homopurine–homopyrimidine sequence motifs, which significantly hampers some of the PNA applications. Here, we suggest an approach to bypass this limitation of common PNAs. We demonstrate that PNA with mixed composition of ordinary nucleobases is capable of sequence-specific targeting of complementary dsDNA sites if they are located at the very termini of DNA duplex. We then show that such targeting makes it possible to perform capturing of designated dsDNA fragments via the DNA-bound biotinylated PNA as well as to signal the presence of a specific dsDNA sequence, in the case a PNA beacon is employed. We also examine the PNA–DNA conjugate and prove that it can initiate the primer-extension reaction starting from the duplex DNA termini when a DNA polymerase with the strand-displacement ability is used. We thus conclude that recognition of duplex DNA by mixed-base PNAs via the end invasion has a promising potential for site-specific and sequence-unrestricted DNA manipulation and detection.


Expert Review of Molecular Diagnostics | 2001

PD-loop technology: PNA openers at work.

Vadim V. Demidov

A concise survey of the emerging PD-loop technology is presented, which outlines several exemplary methods with robust DNA diagnostic potential: duplex DNA capture, topological DNA labeling, nondenaturing DNA sequencing and hybridization of molecular beacons to double-stranded DNA. Advantages of these new PNA-based assays over existing techniques for sequence-specific detection and manipulation of DNA duplexes are discussed. Future prospects for the further development of PD-loop technology are highlighted.


Biophysical Journal | 1997

Kinetic analysis of specificity of duplex DNA targeting by homopyrimidine peptide nucleic acids.

Vadim V. Demidov; M.V. Yavnilovich; Maxim D. Frank-Kamenetskii

A simple theoretical analysis shows that specificity of double-stranded DNA (dsDNA) targeting by homopyrimidine peptide nucleic acids (hpyPNAs) is a kinetically controlled phenomenon. Our computations give the optimum conditions for sequence-specific targeting of dsDNA by hpyPNAs. The analysis shows that, in agreement with the available experimental data, kinetic factors play a crucial role in the selective targeting of dsDNA by hpyPNAs. The selectivity may be completely lost if PNA concentration is too high and/or during prolonged incubation of dsDNA with PNA. However, quantitative estimations show that the experimentally observed differences in the kinetic constants for hpyPNA binding with the correct and mismatched DNA sites are sufficient for sequence-specific targeting of long genomic DNA by hpyPNAs with a high yield under appropriate experimental conditions. Differential dissociation of hpyPNA/dsDNA complexes is shown to enhance the selectivity of DNA targeting by PNA.


Biophysical Journal | 2004

Specific versus Nonspecific Binding of Cationic PNAs to Duplex DNA

Ayome Abibi; Ekaterina Protozanova; Vadim V. Demidov; Maxim D. Frank-Kamenetskii

Although peptide nucleic acids (PNAs) are neutral by themselves, they are usually appended with positively charged lysine residues to increase their solubility and binding affinity for nucleic acid targets. Thus obtained cationic PNAs very effectively interact with the designated duplex DNA targets in a sequence-specific manner forming strand-invasion complexes. We report on the study of the nonspecific effects in the kinetics of formation of sequence-specific PNA-DNA complexes. We find that in a typical range of salt concentrations used when working with strand-invading PNAs (10-20 mM NaCl) the PNA binding rates essentially do not depend on the presence of nontarget DNA in the reaction mixture. However, at lower salt concentrations (<10 mM NaCl), the rates of PNA binding to DNA targets are significantly slowed down by the excess of unrelated DNA. This effect of nontarget DNA arises from depleting the concentration of free PNA capable of interacting with DNA target due to adhesion of positively charged PNA molecules on the negatively charged DNA duplex. As expected, the nonspecific electrostatic effects are more pronounced for more charged PNAs. We propose a simple model quantitatively describing all major features of the observed phenomenon. This understanding is important for design of and manipulation with the DNA-binding polycationic ligands in general and PNA-based drugs in particular.

Collaboration


Dive into the Vadim V. Demidov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge