Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim V. Goremykin is active.

Publication


Featured researches published by Vadim V. Goremykin.


Nature | 1998

Gene transfer to the nucleus and the evolution of chloroplasts

William Martin; Bettina Stoebe; Vadim V. Goremykin; Sabine Hansmann; Masami Hasegawa; Klaus V. Kowallik

Photosynthetic eukaryotes, particularly unicellular forms, possess a fossil record that is either wrought with gaps or difficult to interpret, or both. Attempts to reconstruct their evolution have focused on plastid phylogeny, but were limited by the amount and type of phylogenetic information contained within single genes. Among the 210 different protein-coding genes contained in the completely sequenced chloroplast genomes from a glaucocystophyte, a rhodophyte, a diatom, a euglenophyte and five land plants, we have now identified the set of 45 common to each and to a cyanobacterial outgroup genome. Phylogenetic inference with an alignment of 11,039 amino-acid positions per genome indicates that this information is sufficient — but just barely so — to identify the rooted nine-taxon topology. We mapped the process of gene loss from chloroplast genomes across the inferred tree and found that, surprisingly, independent parallel gene losses in multiple lineages outnumber phylogenetically unique losses by more than 4:1. We identified homologues of 44 different plastid-encoded proteins as functional nuclear genes of chloroplast origin, providing evidence for endosymbiotic gene transfer to the nucleus in plants.


Molecular Biology and Evolution | 2008

Mitochondrial DNA of Vitis vinifera and the Issue of Rampant Horizontal Gene Transfer

Vadim V. Goremykin; Francesco Salamini; Riccardo Velasco; Roberto Viola

The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.


Genome Biology and Evolution | 2013

Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids

Tal Dagan; Mayo Roettger; Karina Stucken; Giddy Landan; Robin Koch; Peter Major; Sven B. Gould; Vadim V. Goremykin; Rosmarie Rippka; Nicole Tandeau de Marsac; Muriel Gugger; Peter J. Lockhart; John F. Allen; Iris Brune; Irena Maus; Alfred Pühler; William Martin

Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.


Plant Systematics and Evolution | 1997

Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times*

Vadim V. Goremykin; Sabine Hansmann; William Martin

Fifty-eight homologous protein sequences from the completely sequenced chloroplast genomes ofZea mays, Oryza sativa, Nicotiana tabacum, Pinus thunbergii, Marchantia polymorpha andPoryphyra purpurea were investigated. Analyzed individually, only 40 of the 58 proteins gave the true, known topology for these species. Trees constructed from the concatenated 14295 amino acid alignment and from automatically generated subsets of the data containing successively fewer polymorphisms were used to estimate theNicotiana-Zea andPinus-angiosperm divergence times as 160 and 348 million years, respectively, with an uncertainty of about 10%. These estimates based upon phylogenetic analysis of protein data from complete chloroplast genomes are in much better accordance with current interpretations of fossil evidence than previous molecular estimates.


Genome Biology and Evolution | 2011

Systematic Error in Seed Plant Phylogenomics

Bojian Zhong; Oliver Deusch; Vadim V. Goremykin; David Penny; Patrick J. Biggs; Robin A. Atherton; Svetlana V. Nikiforova; Peter J. Lockhart

Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinaceae conifers), we report sequences from three new chloroplast (cp) genomes of Southern Hemisphere conifers. We have applied a site pattern sorting criterion to study compositional heterogeneity, heterotachy, and the fit of conifer chloroplast genome sequences to a general time reversible + G substitution model. We show that non-time reversible properties of aligned sequence positions in the chloroplast genomes of Gnetales mislead phylogenetic reconstruction of these seed plants. When 2,250 of the most varied sites in our concatenated alignment are excluded, phylogenetic analyses favor a close evolutionary relationship between the Gnetales and Pinaceae—the Gnepine hypothesis. Our analytical protocol provides a useful approach for evaluating the robustness of phylogenomic inferences. Our findings highlight the importance of goodness of fit between substitution model and data for understanding seed plant phylogeny.


Plant Systematics and Evolution | 2003

The chloroplast genome of the “basal” angiosperm Calycanthus fertilis – structural and phylogenetic analyses

Vadim V. Goremykin; K. I. Hirsch-Ernst; Stefan Wölfl; Frank H. Hellwig

Abstract.The nucleotide sequence of the complete chloroplast genome of a basal angiosperm, Calycanthusfertilis, has been determined. The circular 153337 bp long cpDNA is colinear with those of tobacco, Arabidopsis and spinach. A total of 133 predicted genes (115 individual gene species, 18 genes duplicated in the inverted repeats) including 88 potential protein-coding genes (81 gene species), 8 ribosomal RNA genes (4 gene species) and 37 tRNA genes (30 gene species) representing 20 amino acids were identified based on similarity to their homologs from other chloroplast genomes. This is the highest gene number ever registered in an angiosperm plastome. Calycanthus fertilis cpDNA also contains a homolog of the recently discovered mitochondrial ACRS gene. Since no gene transfer from mitochondria to the chloroplast has ever been documented, we investigated the evolutionary affinity of this gene in detail. Phylogenetic analysis of the protein-coding subset of the plastome suggests that the ancient line of Laurales emerged after the split of the angiosperms into monocots and dicots.


Systematic Biology | 2013

The Evolutionary Root of Flowering Plants

Vadim V. Goremykin; Svetlana V. Nikiforova; Patrick J. Biggs; Bojian Zhong; Peter Delange; William Martin; Stefan Woetzel; Robin A. Atherton; Patricia A. McLenachan; Peter J. Lockhart

Correct rooting of the angiosperm radiation is both challenging and necessary for understanding the origins and evolution of physiological and phenotypic traits in flowering plants. The problem is known to be difficult due to the large genetic distance separating flowering plants from other seed plants and the sparse taxon sampling among basal angiosperms. Here, we provide further evidence for concern over substitution model misspecification in analyses of chloroplast DNA sequences. We show that support for Amborella as the sole representative of the most basal angiosperm lineage is founded on sequence site patterns poorly described by time-reversible substitution models. Improving the fit between sequence data and substitution model identifies Trithuria, Nymphaeaceae, and Amborella as surviving relatives of the most basal lineage of flowering plants. This finding indicates that aquatic and herbaceous species dominate the earliest extant lineage of flowering plants. [; ; ; ; ; .].


Plant Systematics and Evolution | 2005

Evidence for the most basal split in land plants dividing bryophyte and tracheophyte lineages

Vadim V. Goremykin; Frank H. Hellwig

The problem of relationships among the major basal living groups of land plants is long standing, yet the uncertainty as to the phylogenetic affinity of these lines persists in the literature. Molecular and modern cladistic studies of the phylogenetic relationships of the above groups resulted in a large number of conflicting topologies. However, with the exception of the cladistic analyses of spermatogenesis, suggesting monophyly of extant bryophytes, these studies agree the paraphyletic bryophyte grade is basal within the embryophyte tree. Here we would like to present analyses on the basis of the concatenated datasets of nucleotide and amino-acid sequences of 57 protein-coding genes common to 17 chloroplast genomes of land plants and a charophyte alga Chaetosphaeridium globosum. Character-wise, these are the largest datasets currently available to address the problem of basal relationships within embryophytes. Main lineages of bryophytes, i.e liverworts, hornworts and mosses are represented in our alignments with a single taxon, whereas 14 taxa represent the tracheophytes. With our data, phylogeny with liverwort basal appears to be and artifact related to high and unequal A+T contents among the sequences analysed. Reducing this compositional bias and applying methods developed to counter it, we recovered an alternative, strongly supported topology wherein both bryophytes and tracheophytes are monophyletic. Within bryophytes, hornworts are basal and liverworts are sister to mosses.


Molecular Biology and Evolution | 2013

Phylogenetic Analysis of 47 Chloroplast Genomes Clarifies the Contribution of Wild Species to the Domesticated Apple Maternal Line

Svetlana V. Nikiforova; Duccio Cavalieri; Riccardo Velasco; Vadim V. Goremykin

Both the origin of domesticated apple and the overall phylogeny of the genus Malus are still not completely resolved. Having this as a target, we built a 134,553-position-long alignment including two previously published chloroplast DNAs (cpDNAs) and 45 de novo sequenced, fully colinear chloroplast genomes from cultivated apple varieties and wild apple species. The data produced are free from compositional heterogeneity and from substitutional saturation, which can adversely affect phylogeny reconstruction. Phylogenetic analyses based on this alignment recovered a branch, having the maximum bootstrap support, subtending a large group of the cultivated apple sorts together with all analyzed European wild apple (Malus sylvestris) accessions. One apple cultivar was embedded in a monophylum comprising wild M. sieversii accessions and other Asian apple species. The data demonstrate that M. sylvestris has contributed chloroplast genome to a substantial fraction of domesticated apple varieties, supporting the conclusion that different wild species should have contributed the organelle and nuclear genomes to the domesticated apple.


Plant Journal | 2012

The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants

Vadim V. Goremykin; Peter J. Lockhart; Roberto Viola; Riccardo Velasco

Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar.

Collaboration


Dive into the Vadim V. Goremykin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Martin

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Viola

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge